RESEARCH

HOME RESEARCH
Behavior Computing
Multimodal Model
Audience
Audience-aware Co-speech Gesture Generation In Public Speaking Via Anticipation Tokens
Abstract
Speech Emotion Recognition (SER) is typically trained and evaluated on majority-voted labels, which simplifies benchmarking but masks subjectivity and provides little transparency into why predictions are made. This neglects valid minority annotations and limits interpretability. We propose an explainable Speech Language Model (SpeechLM) framework that frames SER as a generative reasoning task. Given an utterance, the model first produces a transcript, then outputs both an emotion label and a concise natural-language rationale grounded in lexical and acoustic cues. Rationales are generated by a reasoning-capable teacher LLM and used as intermediate supervision, combined with majority labels during fine-tuning. Unlike prior work primarily focused on boosting classification accuracy, we aim to enhance explainability while preserving competitive performance. To this end, we complement majority-label metrics with annotator-aware scoring that credits matches with any annotator label. On MSP-Podcast v1.12, our model maintains improvements over zero-shot SpeechLM baselines, and produces rationales that human evaluators find plausible and well grounded. This demonstrates that incorporating rationale supervision offers a practical path toward interpretable SER without sacrificing predictive quality.
Keywords
Co-speech gesture | Public speaking | Audience response | Gesture synthesis
Authors
Publication Date
2026/01/22
Conference
ICASSP 2026