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Abstract
In recent years, there have been significant advancements in
one-shot voice conversion (VC), enabling the alteration of
speaker traits with just a single sentence. However, as this
technology matures and generates increasingly realistic utter-
ances, it becomes vulnerable to privacy concerns. In this paper,
we propose RW-VoiceShield to shield voice from replication.
This is achieved by effectively attacking one-shot VC models
through the application of imperceptible noise generated from
a raw waveform-based generative model. Our method under-
goes testing using the latest one-shot VC model, conducting
subjective and objective evaluations under both black-box and
white-box scenarios. Our results indicate significant disparities
in speaker characteristics between the utterances generated by
the VC model and those of the protected speaker. Furthermore,
even with adversarial noise introduced to protected utterances,
the speaker’s distinct characteristics remain recognizable.
Index Terms: voice conversion, adversarial attack, speaker ver-
ification, speaker representation

1. Introduction
Deepfakes, combining deep learning and fake elements, revo-
lutionize the creation of realistic media across various domains
such as avatars, chatbots, and artistic creations [1, 2, 3]. Driven
by recent advancements in deep learning technology and gener-
ative models, this technology seamlessly alters faces [4, 5, 6],
voices [7, 8, 9, 10, 11, 12], and expressions [13, 14] in images,
audio, and videos, blurring the boundary between reality and
fiction. However, it also raises significant concerns regarding
privacy and security, including forging legal evidence, facilitat-
ing identity theft and financial scams.

Audio deepfakes, a major subset of deepfake technology,
specialize in cloning human voices. While initially driven by
positive motives, research on audio deepfakes has led to fas-
cinating and practical applications like AI singers [15, 16, 17]
or cross-lingual voice conversion [18], which also aided in data
augmentation for speech-related studies [19]. However, these
advancements have also been exploited by malicious actors.
For instance, in 2019, fraudsters utilized AI-based software to
mimic a CEO’s voice, resulting in a telephone scam that de-
frauded over USD 243,000 [20]. Among the techniques em-
ployed in audio deepfakes, Voice Conversion (VC) is particu-
larly popular but carries significant risks. VC is a technique that
alters a source speaker’s voice to mimic a particular target style,
including elements like speaker identity, prosody, and emotion
while preserving the linguistic content. Some studies [21, 22]
have shown that VC can effectively fool automatic speaker ver-
ification (ASV) systems and speech classification tasks, pos-
ing a serious threat to security and privacy. Furthermore, re-

cent advancements in VC, particularly in one-shot approaches
[7, 8, 11], enable the synthesis of realistic and high-quality ut-
terances for any speaker using only one example utterance with-
out fine-tuning. This makes cloning someone’s voice easier,
requiring only a single sample of the target speaker’s voice.
Therefore, addressing the privacy/safety concerns posed by VC
is urgent and warrants discussion.

Conventional method for addressing these issues caused by
audio deepfakes is Audio Deepfake Detection, which employs
learning-based algorithms to distinguish between genuine and
fabricated audio, yielding promising results [23, 24]. However,
while effective in detecting disingenuous samples, these meth-
ods fail to actively prevent voice replication, leaving copied
voices vulnerable to malicious exploitation. Huang et al. [25]
recently proposed a method to shield voice characteristics of
speech samples from replication by applying perturbations to
audio files, introducing an adversarial attack as a defense mech-
anism. Subsequent studies [26, 27] have also shown promis-
ing results. Typically, these studies employ a two-stage attack
framework: extracting acoustic features from audio files, apply-
ing privacy-preserving perturbations to these features, and syn-
thesizing utterances using a vocoder. However, this approach
often encounters feature mismatch, where acoustic features dif-
fer from those used in vocoder training. Moreover, vocoders
can neutralize privacy-preserving perturbations and even limit
the feature size used while applying adversarial attacks. These
methods require training a separate vocoder for models with
varying feature sizes to avoid attack failures, which is not prac-
tical. In this paper, we focus on addressing these issues by di-
rectly generating adversarial perturbations in the original raw
waveform to shield voices from being cloned.

Specifically, we propose a system named RW-VoiceShield
to launch adversarial attacks using raw waveform-based genera-
tive models on a state-of-the-art one-shot VC model by drawing
inspiration from the embedding attack methodology introduced
by Huang et al. [25] and the framework developed by Xie et
al. [28] for conducting adversarial attacks on ASV models. Our
approach is evaluated through objective and subjective assess-
ments on the CSTR VCTK Corpus [29]. The objective ASV
analysis indicates substantial differences in speaker character-
istics between the VC model’s generated utterances and those
of the protected speaker, with adversarial perturbations mini-
mally affecting speaker attributes and speech quality. Moreover,
RW-VoiceShield maintains a higher signal-to-noise ratio and
achieves better attack effectiveness compared to the baseline.
The subjective tests reveal that the attacked VC model has diffi-
culties in convincingly replicating the protected speaker’s voice
according to human perception. Our analysis confirms that our
idea effectively distances the speaker characteristics replicated
by the VC from those of the protected speaker.
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Figure 1: Training and Testing phase of RW-VoiceShield. The dashed double arrow section represents the target of the loss update.

2. Methodology
2.1. Dataset
The dataset is divided into two parts: one part is utilized for ad-
versarial training of the generative model, while the other part
is used for retraining the speaker encoder under the black-box
scenario. For the first part, we initially divide 108 speakers from
CSTR VCTK Corpus dataset [29] into two groups based on
their gender. Each group is then further merged into the train-
ing, validation, and testing sets in a ratio of 3:1:1. The second
part involves merging all the speech data from CSTR VCTK
[29], VoxCeleb1 [30], and VoxCeleb2 [31].

2.2. Proposed Model
Our proposed method is shown in Figure 1. We select Free-VC
[7], an advanced one-shot VC model, to assess the effectiveness
of RW-VoiceShield in preventing voice replication by VC mod-
els. Like other common one-shot VC models, Free-VC adopts
an encoder-decoder architecture at the testing phase in Figure 1.
In this setup, the encoder includes a speaker encoder ENCs to
capture the speaker’s traits from the utterance x, along with a
content encoder ENCc to extract content details from the ut-
terance t. These output embeddings, ENCs(x) and ENCc(t),
are then processed by the decoder to produce sentences that
mimic the speaker’s characteristics of x while preserving the
content from t. Our goal is to alter the output of ENCs to
make it dissimilar from the embedding of the protected speaker.

During the training process, shown as Figure 1, we make
modifications to the WaveUNet proposed by Stoller et al. [32],
a raw waveform-based generative model, denoted as G, to serve
as our base model. In the forward propagation phase, for each
waveform of an utterance to be protected, denoted as x or pro-
tected input, we randomly select another utterance from a dif-
ferent speaker, denoted as y or target utterance. We compute
the mel-spectrogram of x and y, input them into ENCs, and
obtain speaker embeddings, Ex and Ey , note that the ENCs

here is pretrained and frozen, meaning it does not participate in
updates. These embeddings are then concatenated with a hid-
den layer of G. G takes three inputs, namely, x, Ex, and Ey , to
generate the adversarial perturbation, denoted as δx. We center
δx around zero by subtracting its mean along the time axis, as
observed in experiments that without this step, G tended to pro-
duce a positive constant value, directly added to x. While such
attacks might succeed, they are vulnerable to countermeasures
and easily invalidated. We scale δx so that when added to x, the

SNR equals a noise constraint constant z. Finally, we obtain the
waveform resulting from the mixture of x and δx, denoted as x′

or adversarial input. Here, “input” refers to the input of the VC
model during the testing phase as shown in Figure 1.

Our training objective is to minimize the similarity between
the speaker embedding of the adversarial input, Eadv , and em-
bedding of the protected input, Ex, while maximizing the sim-
ilarity between Eadv and Ey . By doing so, when Eadv is input
into the decoder of the VC model and synthesized, the resulting
voice will be distinguishable from the voice of x’s speaker. This
ensures the protection of the speaker characteristics of x from
being replicated by the VC model. We utilize mean square error
(MSE) and cosine similarity (CS) as loss functions, as shown in
Equation 1 and 2, and note that there is a positive-valued hy-
perparameter λ balancing the importance between the two loss
terms. Pseudocode is provided in Algorithm 1.
LCS = 1− cos(Eadv, Ex)+λ ·max(0, cos(Eadv, Ey)) (1)

LMSE = −MSE(Eadv, Ex) + λ ·MSE(Eadv, Ey)) (2)

2.3. Attack Scenarios
Here, we explore two distinct scenarios. In one scenario, the
attacker has unrestricted access to the target model, including
full knowledge of its architecture and trained parameters. This
allows for direct application of adversarial attacks, commonly
referred to as the white-box scenario. In this scenario, we uti-
lize the pretrained speaker encoder provided by Free-VC as the
ENCs component of RW-VoiceShield, ensuring consistency
with the ENCs used during the testing phase. The second sce-
nario, known as the black-box scenario, involves the attacker
lacking direct access to the parameters of the target model. We
make slight modifications to the model by adjusting the hidden
layer size and subsequently train a new speaker encoder, using
it as the ENCs during the training phase. However, during the
testing phase, we maintain consistency by using the ENCs pro-
vided by Free-VC. Note that different ENCs are employed for
the two phases. We compare the effectiveness of attacks in the
two scenarios in subsequent analyses.

3. Experiment Results and Analysis
3.1. Experimental Settings and Evaluation Metrics
In all experiments, the Adam optimizer is utilized with an ini-
tial learning rate of 0.001. Additionally, a cyclic learning rate
is applied with a maximum learning rate of 0.001 and a min-
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Algorithm 1 Training procedure of RW-VoiceShield

Require: Training pairs D = {(x1, y1), ..., (xn, yn)},Speaker
Encoder ENCs, noise constraint parameter z, constant
weight λ

Ensure: Trained generative model G(·)
1: for number of iterations do
2: for number of steps do
3: x, y ← minibatch of m pairs from D
4: Ex ← ENCs(Mel(x))
5: Ey ← ENCs(Mel(y))
6: δx ← G(x,Ex, Ey)
7: δx ← δx −Mean(δx)

8: δx ← RMS(x)

RMS(δx)·10
z
20
· δx

9: Eadv ← ENCs(x+ δx)
10: Loss← 1− cos(Eadv, Ex)
11: +λ ·max(0, cos(Eadv, Ey))
12: minimize Loss to update G(·)
13: end for
14: end for

imum learning rate of 0.00001. The batch size was set to 4,
and the noise constraint parameter z is initially set to 20, while
λ is set to 0.1. We conduct evaluations every 10,000 steps
and implement early stopping with a patience of 5. All results
are calculated using the toolkit [33] at a 95% confidence level
and recorded in Table 1. To explore the relationship between
the noise constraint parameter z and the model’s performance,
when the early stopping criteria are met, the model is saved, and
the value of z is incremented by 1 before continuing training.
This process continues for z values ranging from 20 to 25, and
the results are recorded in Table 2. To evaluate the performance
of the proposed idea we use the attack success rate (ASR) and
preservation success rate (PSR) over 1050 test sets. In addition,
we estimate the PESQ, SNR, and STOI of the adversarial input
as metrics for comparing perceptual quality.

We reimplement the embedding attack proposed by Huang
et al.[25] as our baseline and test it in the white-box scenario.
The difference between this approach and RW-VoiceShield is
that it applies adversarial perturbation to the spectrogram of the
x instead of the waveform. This perturbation is a trainable ten-
sor updated based on the mean square error between the Ex

and Ey . The spectrogram with the added perturbation is then
synthesized into adversarial utterance using the Griffin-Lim al-
gorithm [34]. We test this approach on our testing dataset and
present the results in Table 1.

3.2. Objective Tests
We adopt an automatic speaker verification (ASV) model, uti-
lizing the pretrained ECAPA-TDNN [35], to assess whether the
attack is successful and whether the adversarial noise affects the
speaker characteristics of the protected input. It encodes two
input utterances into embeddings and computes their similarity.
Utterances surpassing a predefined threshold are considered to
be uttered by the same speaker. The threshold is determined
based on the equal error rate (EER) when verifying randomly
sampled utterance pairs from the VCTK corpus. Specifically,
we select 256 utterances for each speaker in the dataset and di-
vide them equally into positive and negative samples. Positive
samples were compared against random utterances from the au-
thentic speaker, while negative samples were compared against
random utterances from other randomly selected speakers. This

Table 1: Performance comparison with baseline. The abbrevi-
ations represent different configurations of the proposed model,
”CS” and ”MSE” denote the types of loss utilized, and ”w”
and ”b” indicate white-box and black-box scenarios. The val-
ues within parentheses represent the lower and upper bounds of
the confidence interval.

Model ASR PSR SNR PESQ STOI

B-w [25] 0.53 0.99 4.01 1.61 0.77
(0.46, 0.61) (0.98, 1.00) (3.92, 4.06) (1.56, 1.67) (0.76, 0.78)

P-CS-w 0.94 0.82 19.98 1.79 0.81
(0.90, 0.98) (0.76, 0.88) (19.97, 19.99) (1.74, 1.84) (0.79, 0.83)

P-MSE-w 0.70 0.99 19.99 1.97 0.84
(0.61, 0.79) (0.97, 1.00) (19.98, 20.00) (1.91, 2.01) (0.82, 0.86)

P-CS-b 0.85 0.95 20.03 1.90 0.81
(0.83, 0.87) (0.92, 0.98) (20.01, 20.05) (1.86, 1.94) (0.79, 0.83)

P-MSE-b 0.74 0.97 19.98 1.99 0..82
(0.64, 0.83) (0.94, 0.99) (19.97, 19.99) (1.93, 2.03) (0.80, 0.84)

Table 2: Performance comparison of the proposed P-CS-b
model under different SNR variations.

SNR ASR PSR PESQ STOI
20 0.84 0.95 1.90 0.81
21 0.80 0.97 1.98 0.82
22 0.78 0.98 2.05 0.84
23 0.73 0.99 2.17 0.85
24 0.70 1.00 2.28 0.87
25 0.66 1.00 2.40 0.88

yielded a threshold of 0.328, with an EER of 0.027.
Among the 21 speakers in our test dataset, we randomly se-

lect 50 utterances from each speaker as the protected input x.
To evaluate the effectiveness of our attacks, we pair each x with
a randomly chosen utterance t from a different speaker and a
target utterance y from a speaker of the opposite gender of x.
This test set, denoted as (x, y, t), must meet a specific condi-
tion: the pair (F (x, t), x) should pass the ASV system. Here,
F (x, t), denoted as original output, represents the synthesized
speech obtained by encoding x with a speaker encoder and t
with the content encoder of FreeVC. This condition is imposed
to ensure that before the attack, the VC successfully synthesizes
speech that closely resembles the speaker characteristics of x.
Subsequently, We feed (x, y) into RW-VoiceShield and baseline
model to generate adversarial input x′.

Next, we feed x′ and t into the ENCs and ENCc of the
VC, shown as the testing phase in Figure 1, to obtain F (x′, t),
denoted as the adversarial output. In the ideal scenario, for the
pair (F (x′, t), x), we expect it to fail to pass the ASV system,
indicating the success of our attack and effectively protecting
the voice of x from voice cloning. Furthermore, for the pair
(x′, x), we expect it to pass the ASV system, demonstrating
that even after adding adversarial perturbations, we are able to
successfully preserve the speaker characteristics of x. Table 1
shows all the performance results.

Table 1 summarizes the results: B-w for the baseline model
in white-box scenario, P-CS-w and P-MSE-w for the proposed
model with CS and MSE loss in white-box scenario, P-CS-b and
P-MSE-b in black-box scenario. In the white-box scenario, both
P-CS-w and P-MSE-w achieve higher ASR at a significantly
higher SNR compared to the baseline model. For instance, the
ASR of RW-VoiceShield is 0.94 at an SNR of 19.98, while that
of the baseline model is 0.53 at an SNR of 4.01. Additionally,
P-CS-w exhibits a higher PESQ at 1.79, compared to 1.61 for
the baseline model, and a better STOI at 0.81, compared to 0.77
for the baseline model. The significant performance gap arises
due to the two-stage issue of the baseline model. As the input

2732



(a) Male→Male (b) Male→Female (c) Female→Male (d) Female→Female

Figure 2: t-SNE analysis of objective tests, the title indicates the gender of speaker of x and gender of speaker of y respectively.

of ENCs consists of low-resolution spectrograms, the base-
line model can only apply perturbations to these low-resolution
spectrograms in the white-box scenario. However, the perturbed
spectrograms cannot be properly reconstructed by the vocoder,
leading to ineffective attacks and poor perceptual quality. This
highlights the advantage of RW-VoiceShield, which conducts
adversarial attacks directly on the waveform, thereby avoiding
the issues caused by the two-stage process in the baseline. Ad-
ditionally, the experimental results indicate that in the black-box
scenario, although the ASR is slightly lower than in the white-
box scenario, P-CS-b still reaches 0.85. Comparing the two
types of loss, CS loss yields a slightly higher ASR, but the PSR
is slightly lower compared to MSE loss. We also analyze the
relationships between ASR, PSR, PESQ, and SNR in Table2,
revealing that as SNR increases, ASR decreases while PSR and
PESQ increase. This can be explained by the higher probability
of successful attacks with the addition of more perturbations,
while also experiencing a certain loss in perceptual quality and
the speaker’s characteristics of the protected input.

We conduct four sets of experiments using P-CS-b, explor-
ing combinations of speakers’ genders for x and y. For each
set, we generate 50 test sets (x, y, t), with x and y selected ran-
domly from distinct speakers. The protected input x, along with
the generated adversarial output and original output, are input
into the ASV model to calculate embeddings. We then utilize
t-SNE to analyze their distributions, as depicted in Figure 2.
Our analysis reveals distinct clusters, with the distributions of
protected inputs and original outputs being relatively close, in-
dicating effective VC replication before the attack. However,
adversarial outputs display a notable separation from original
outputs, with their distance from original inputs even greater,
suggesting RW-VoiceShield effectively distinguishes the distri-
bution of adversarial outputs from the original ones.

3.3. Subjective Tests
We conduct subjective evaluations using P-CS-w and P-CS-b.
We randomly select two protected inputs from 21 test speakers,
resulting in 42 sets (x, y, t). Each set comprise three pairs of
utterances, where one was the protected input, and the others
were either the adversarial input, adversarial output, or original
output. Participants were instructed to determine whether two
given utterances originated from the same speaker by choosing
one of four options: (I) Different, absolutely sure; (II) Different,
but not very sure; (III) Same, but not very sure; and (IV) Same,
absolutely sure. Each pair was evaluated by 6 subjects, and
to mitigate outliers, we excluded two extreme ballots on both
ends for each pair. The percentages of ballots are depicted in
Figure 3.

The results align with the objective test. Initially, 72.62%
of original outputs are successfully replicated by the VC, per-

Figure 3: Subjective tests result with RW-VoiceShield.

ceived as from the same speakers as the protected inputs. Fol-
lowing our attack only left 11.9% and 20.84% of adversarial
outputs in both scenarios are identified as from the same speaker
as the protected inputs. Notably, 75% and 61.9% of respon-
dents in both scenarios believed that adversarial outputs def-
initely came from different speakers than the protected inputs.
This demonstrates our success in neutralizing the VC’s ability to
mimic the speaker characteristics of the protected inputs. Bars
(b) and (d) reveal that 97.02% and 98.81% of the adversarial
inputs were recognized as originating from the same speaker as
the protected utterances. This suggests that adversarial inputs
preserve the speaker characteristics of the protected inputs. For
a demonstration and access to the source code, visit https:
//github.com/gino0950150/RW_VoiceShield.

4. Conclusion

We introduce a novel approach to attacking VC by adding subtle
noise to protected utterances, hindering one-shot VC’s ability
to replicate speaker characteristics. Using a waveform-based
generative model, we apply perturbations directly in the time
domain, avoiding the two-stage challenge of previous methods.
We train a general model to infer adversarial noise for different
inputs, eliminating the need to retrain for each protected utter-
ance. Evaluated on state-of-the-art one-shot VC models in both
black-box and white-box scenarios, our method significantly re-
duces the VC’s ability to mimic voices while preserving the
original speaker characteristics. This is supported by objective
speaker verification tests and subjective evaluations. Future re-
search will focus on enhancing the model’s generalizability to
effectively attack various VC models.

2733



5. References
[1] J. Zhang, Z. Jiang, D. Yang, H. Xu, Y. Shi, G. Song, Z. Xu,

X. Wang, and J. Feng, “Avatargen: a 3d generative model for an-
imatable human avatars,” in European Conference on Computer
Vision. Springer, 2022, pp. 668–685.

[2] T. Wang, B. Zhang, T. Zhang, S. Gu, J. Bao, T. Baltrusaitis,
J. Shen, D. Chen, F. Wen, Q. Chen et al., “Rodin: A generative
model for sculpting 3d digital avatars using diffusion,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 4563–4573.

[3] J. Oppenlaender, “The creativity of text-to-image generation,” in
Proceedings of the 25th International Academic Mindtrek Confer-
ence, 2022, pp. 192–202.

[4] Y. Zhu, Q. Li, J. Wang, C.-Z. Xu, and Z. Sun, “One shot face
swapping on megapixels,” in Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2021, pp.
4834–4844.

[5] Y. Li, C. Ma, Y. Yan, W. Zhu, and X. Yang, “3d-aware face swap-
ping,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 12 705–12 714.

[6] W. Zhao, Y. Rao, W. Shi, Z. Liu, J. Zhou, and J. Lu, “Diffswap:
High-fidelity and controllable face swapping via 3d-aware masked
diffusion,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023, pp. 8568–8577.

[7] J. Li, W. Tu, and L. Xiao, “Freevc: Towards high-quality text-free
one-shot voice conversion,” in ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2023, pp. 1–5.

[8] Y. Yang, Y. Kartynnik, Y. Li, J. Tang, X. Li, G. Sung, and
M. Grundmann, “Streamvc: Real-time low-latency voice conver-
sion,” arXiv preprint arXiv:2401.03078, 2024.

[9] E. Casanova, J. Weber, C. D. Shulby, A. C. Junior, E. Gölge, and
M. A. Ponti, “Yourtts: Towards zero-shot multi-speaker tts and
zero-shot voice conversion for everyone,” in International Con-
ference on Machine Learning. PMLR, 2022, pp. 2709–2720.

[10] M. Le, A. Vyas, B. Shi, B. Karrer, L. Sari, R. Moritz,
M. Williamson, V. Manohar, Y. Adi, J. Mahadeokar et al.,
“Voicebox: Text-guided multilingual universal speech generation
at scale,” Advances in neural information processing systems,
vol. 36, 2024.

[11] Y. A. Li, C. Han, and N. Mesgarani, “Styletts-vc: One-shot voice
conversion by knowledge transfer from style-based tts models,”
in 2022 IEEE Spoken Language Technology Workshop (SLT).
IEEE, 2023, pp. 920–927.

[12] K. Shen, Z. Ju, X. Tan, Y. Liu, Y. Leng, L. He, T. Qin, S. Zhao,
and J. Bian, “Naturalspeech 2: Latent diffusion models are natu-
ral and zero-shot speech and singing synthesizers,” arXiv preprint
arXiv:2304.09116, 2023.

[13] N. Shah, M. Singh, N. Takahashi, and N. Onoe, “Nonparallel
emotional voice conversion for unseen speaker-emotion pairs us-
ing dual domain adversarial network & virtual domain pairing,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[14] G. Zhang, Y. Qin, W. Zhang, J. Wu, M. Li, Y. Gai, F. Jiang, and
T. Lee, “iemotts: Toward robust cross-speaker emotion transfer
and control for speech synthesis based on disentanglement be-
tween prosody and timbre,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2023.

[15] Y. Ren, X. Tan, T. Qin, J. Luan, Z. Zhao, and T.-Y. Liu,
“Deepsinger: Singing voice synthesis with data mined from the
web,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp.
1979–1989.

[16] J. Liu, C. Li, Y. Ren, F. Chen, and Z. Zhao, “Diffsinger: Singing
voice synthesis via shallow diffusion mechanism,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 36, no. 10,
2022, pp. 11 020–11 028.

[17] Y.-J. Luo, C.-C. Hsu, K. Agres, and D. Herremans, “Singing voice
conversion with disentangled representations of singer and vocal
technique using variational autoencoders,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2020, pp. 3277–3281.

[18] S. Zhao, H. Wang, T. H. Nguyen, and B. Ma, “Towards natu-
ral and controllable cross-lingual voice conversion based on neu-
ral tts model and phonetic posteriorgram,” in ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, pp. 5969–5973.

[19] S. Shahnawazuddin, N. Adiga, K. Kumar, A. Poddar, and W. Ah-
mad, “Voice conversion based data augmentation to improve chil-
dren’s speech recognition in limited data scenario.” in Interspeech,
2020, pp. 4382–4386.

[20] C. Stupp, “Fraudsters used ai to mimic ceo’s voice in unusual cy-
bercrime case,” The Wall Street Journal, 2022.

[21] X. Tian, R. K. Das, and H. Li, “Black-box Attacks on Auto-
matic Speaker Verification using Feedback-controlled Voice Con-
version,” in Proc. The Speaker and Language Recognition Work-
shop (Odyssey 2020), 2020, pp. 159–164.

[22] Z. Ye, T. Mao, L. Dong, and D. Yan, “Fake the Real: Backdoor
Attack on Deep Speech Classification via Voice Conversion,” in
Proc. INTERSPEECH 2023, 2023, pp. 4923–4927.

[23] H. Ilyas, A. Javed, and K. M. Malik, “Avfakenet: A unified end-
to-end dense swin transformer deep learning model for audio–
visual deepfakes detection,” Applied Soft Computing, vol. 136, p.
110124, 2023.

[24] A. Hamza, A. R. R. Javed, F. Iqbal, N. Kryvinska, A. S. Almadhor,
Z. Jalil, and R. Borghol, “Deepfake audio detection via mfcc fea-
tures using machine learning,” IEEE Access, vol. 10, pp. 134 018–
134 028, 2022.

[25] C.-y. Huang, Y. Y. Lin, H.-y. Lee, and L.-s. Lee, “Defending your
voice: Adversarial attack on voice conversion,” in 2021 IEEE Spo-
ken Language Technology Workshop (SLT). IEEE, 2021, pp.
552–559.

[26] Z. Liu, Y. Zhang, and C. Miao, “Protecting your voice from
speech synthesis attacks,” in Proceedings of the 39th Annual Com-
puter Security Applications Conference, 2023, pp. 394–408.

[27] Z. Yu, S. Zhai, and N. Zhang, “Antifake: Using adversarial audio
to prevent unauthorized speech synthesis,” in Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2023, pp. 460–474.

[28] Y. Xie, Z. Li, C. Shi, J. Liu, Y. Chen, and B. Yuan, “Enabling fast
and universal audio adversarial attack using generative model,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 16, 2021, pp. 14 129–14 137.

[29] J. Yamagishi, C. Veaux, and K. MacDonald, “CSTR VCTK Cor-
pus: English multi-speaker corpus for CSTR voice cloning toolkit
(version 0.92),” sound, 2019.

[30] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-
scale speaker identification dataset,” in INTERSPEECH, 2017.

[31] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” in INTERSPEECH, 2018.

[32] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale
neural network for end-to-end audio source separation,” arXiv
preprint arXiv:1806.03185, 2018.

[33] L. Ferrer and P. Riera, “Confidence intervals for evaluation
in machine learning.” [Online]. Available: https://github.com/
luferrer/ConfidenceIntervals

[34] D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on acoustics, speech,
and signal processing, vol. 32, no. 2, pp. 236–243, 1984.

[35] B. Desplanques, J. Thienpondt, and K. Demuynck, “ECAPA-
TDNN: emphasized channel attention, propagation and aggrega-
tion in TDNN based speaker verification,” in Interspeech 2020,
H. Meng, B. Xu, and T. F. Zheng, Eds. ISCA, 2020, pp. 3830–
3834.

2734


