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Abstract

There has been increasing attention drawn to modelling inter-
rater ambiguity in Continuous Emotion Recognition (CER) sys-
tems using probability distributions for arousal and valence.
However, the relationship between modelling label ambiguity
and robustness to noise, and more broadly, the impact of real-
world noise on CER systems remains insufficiently explored.
In this study, we argue that incorporating inter-rater ambigu-
ity during training can regularize the noise response, leading to
noise robustness. To this end, we propose a novel loss function
that incorporates inter-rater ambiguity into model training. Ex-
periments conducted on the RECOLA dataset demonstrate that
our proposed method achieves a maximum Concordance Cor-
relation Coefficient (CCC) improvement of 0.117 and 0.077 for
mean and standard deviation predictions, respectively, across all
noise conditions. We further integrate traditional noisy augmen-
tation strategies with our proposed method and observe promis-
ing results.

Index Terms: Continuous emotion prediction, Inter-rater am-
biguity, Noise robustness

1. Introduction

Speech emotion recognition (SER) plays a pivotal role in de-
veloping natural human-computer interaction. Within the SER
community, the complexity and richness of real-world emotions
has led them to be represented with time and value-continuous
affect dimensions, such as arousal and valence [1], leading to
the development of Continuous Emotion Recognition (CER).
The continuous emotion labels are typically collected from mul-
tiple raters who listen to audio recordings and provide their an-
notations within a certain numerical range, resulting in time-
series ratings. However, inherent differences in perception,
known as ‘inter-rater ambiguity’, exist due to differences in the
perception of different individuals. This ambiguity inherently
captures the richness of emotional nuances present in real-world
speech and should be considered in the system development.
However, conventional CER systems often treat ambigu-
ity as unwanted ‘uncertainty’ and only model the mean of the
ratings [2, 3]. Recently, there has been a growing recogni-
tion of the importance of modeling ambiguity and developing
ambiguity-aware emotion recognition systems, wherein ambi-
guity is modelled with probability distributions. For instance,
Wu et al. developed a Sequential Monte Carlo framework as
a non-paramtric and non linear dynamical model for predicting
ambiguous emotion states [4]. Atcheson et al. utilised Gaus-
sian processes to capture the label ambiguity with Gaussian
distributions and employed a long short-term memory (LSTM)
networks to make predictions [5]. Additionally, Bose et al.
demonstrated the effectiveness of employing a Beta distribution
for ambiguity modelling and utilized a similar neural network

structure for predicting ambiguous emotion states [6]. These
studies have expanded the feasibility of modelling the ambi-
guity and subtlety of emotions, setting the stage for modelling
emotion in more complex scenarios of real-world applications,
such as those encountered under noisy conditions.

In the real-world applications, the background noises de-
grade the quality of the original speech signals, leading to the
degradation of SER performance. Despite extensive efforts to
enhance the noise robustness of SER for traditional emotion
classification tasks through various techniques such as speech
enhancement [7, 8] or noisy data augmentation [9, 10], the im-
pact of noise on continuous emotion prediction systems remains
inadequately explored, particularly for CER systems that are
ambiguity-aware. Given that humans exhibit differences in the
perception of emotion, could this diversity lead to a robustness
to noise? In particular, it raises the question: Can modelling
emotion perceptions from multiple raters (i.e., inter-rater ambi-
guity) enhance the noise robustness of CER systems?

An SER system’s learning process involves rater subjectiv-
ity and is vulnerable to noise-induced signal variability, both
of which can impact its performance. Under these dual-factors
variability idea, in this paper, we hypotheses that the CER sys-
tem trained with proper rater subjectivity help constraint the
model behavior to be robust even when faced with noise (i.e.,
signal variability). Specifically, we investigate the noise robust-
ness of CER systems when inter-rater ambiguity is incorporated
and modelled with probability distributions. Furthermore, we
propose a novel technique to integrate ambiguity into system
training through a loss function. Leveraging the advantages
of the recently proposed metric, the ‘Belief Mismatch Coeffi-
cient (BMC)’, which offers both quantitative and interpretable
comparison by directly assessing predicted distributions against
ground truth ratings [11], we propose a novel ‘Belief Mismatch
Loss (BML)’. It measures the loss in belief that emotion states
belong to a given region under both predicted and inferred dis-
tribution derived from the multi-rater labels. This loss effec-
tively captures the ambiguity into system learning as opposed
to conventional loss functions such as concordance correlation
coefficient and mean squared error, aiming to further enhance
the CER system’s capability in noisy conditions.

2. Methodology
2.1. Target Distribution Parameterization

Given a set of ground truth ratings Yn = {Yn,1, Yn,2, -, Yn,m }
from m raters at a single time instance n, we assume the emo-
tion states with associated ambiguity could be modelled as a
Beta distribution since it has been shown to be the most suitable
candidate to capture inter-rater ambiguity in CER tasks [12].
Following a similar approach to previous studies [13], the tar-
get Beta distribution 3,, are derived from ground truth ratings
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Figure 1: lllustration of our framework and hypothesis.

Yn as a Maximum A Posterior (MAP) estimate. The most com-
monly utilised parameterization pair of Beta distribution are the
either the shape parameters {a, b}, {mean (1), standard devia-
tion (o)} or {mode, concentration} [13]. For a better interpre-
tation of the distribution characteristics, we adopt {u, o} pair
as our Beta parameters, and a direct conversion between {a, b}
and {p, o} are given as: p = ;95,0 = W. Here,
a, b must satisfy the constraint that @ > 1 and b > 1 for a bell-
shaped Beta distribution to be valid for capturing ambiguity in
continuous emotion states.

2.2. System Representation

2.2.1. System Model Structure

A graphical representation of the system architecture is il-
lustrated in Figure 1. A multi-task learning strategy is
employed for predicting the time-varying Beta distributions
B = {B1,B2,....,0,} from the input speech features x
{®1,®2,...,xn} under different noisy levels. Following the
backbone model structure of the SOTA framework [13], two
stacked Long Short-Term Memory (LSTM) layers shared their
weights in the front-end of the model and two branches of fully
connected layers with a sigmoid activation function are imple-
mented. The Beta parameter mean and standard deviation (SD)
are simultaneously predicted in parallel.

2.2.2. Optimization Strategy

During system training, the goal is to minimize discrepancies
between predicted and target distributions. To incorporate inter-
rater ambiguity into the learning process, we introduce a novel
loss function that assesses the predicted distribution against the
target distribution from two perspectives: 1) measuring devia-
tions in typical distribution characteristics like mean and stan-
dard deviation (SD); 2) evaluating overall distribution shape
mismatch. The proposed loss function is formulated as follows.

Ltotul :nHL(l“'Pvut)+naL(o'p,Ut) +77va (1)
where g, and o, denote the mean and standard deviation (SD)
sequences of either predicted (p) or target (t) distributions . 7«
is the adjustable loss constant weight for each loss term. L(.)
refers to the concordance correlation coefficient (CCC) loss,
which commonly utilized for time-series predictions and also
adopted in ambiguity-aware CER systems [14, 13].

We propose the belief mismatch loss (BML), denoted as L,
in Equation 1, as a means to incorporate a nuanced awareness
of ambiguity into model training. Inspired by the belief mis-
match coefficient (BMC) [11], a recent metric for measuring
the accuracy of ambiguous emotion predictions, BML quanti-
fies the mismatch between the distributions by comparing the
belief that emotion states belong to a given region. Details of
BML are further elaborated in the subsequent section.
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2.3. Proposed Belief Mismatch Loss

2.3.1. Belief Mismatch Coefficient (BMC)
Belief Mismatch Coefficient (BMC) is a novel metric, gauging
the prediction accuracy of an ambiguity-aware emotion predic-
tion system. A value of 1 signifies a perfect match between the
probability density function (PDF) of predicted (f7(y)) and in-
ferred distributions (f*(y)) , quantifying the mismatch in belief
about whether emotion states fall within a specific range [11].
In the original BMC approach, an a-likely region (1) is
defined as the area formed by the two intersection points of any
horizontal line and the target PDF (Refer to 1(b)), which is used
to compute the belief mismatch ratio (BMR, 7, ) via per Equa-
tion 2. The BMR indicates how well the arousal/valence region
predicted by the system, with probability P, matches the re-
gion inferred from the ground truth ratings.

Py

= 25 @)

Yo Py = . [ (y)dy
where P indicates the belief that the perceived emotion states
fall within I, under predicted or inferred distribution f*(y).

The BMR across all possible a-likely regions are then com-
puted, from the most likely to the least likely regions. Finally,
the BMC is computed as:

’Y:%Z%
Va

where A denotes the number of different intervals (I,) for
which BMRs were estimated.

2.3.2. Belief Mismatch Loss (BML)

Inspired by BMC, we propose the Belief Mismatch Loss (BML),
denoted as L. Figure 1 (b) illustrates the idea of BML. Given
a predicted distribution f?(y) (blue) and the target distribution
F*(y) (orange) inferred from the ground truth ratings, the BML
measures the loss that the belief of the emotion states falling
into a region along the affect dimension (arousal/valence) under
FP(y) against that under f*(y).

We define A + 2 regions of I, by dividing the interval
[0, max(f(y))] into A + 2 equal steps. The BMR is then com-
puted according to Equation (2) at each region from the 2"% to
the (A + 1)*" region. This process is depicted in Figure 1 (b),
where the horizontal line loops from the top to the bottom. The
first and last regions are excluded because when I, approaches
zero or encompasses the entire arousal/valence y plane, the be-
liefs on both the predicted and target distributions are either
close to 0 or equal to 1, making them irrelevant for the pur-
pose of comparisons. Finally, the BML is computed from BMC

(7) as:
“

3
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Although the original BMC approach is not constrained to
only Beta distributions, it is only valid for unimodal distribu-
tions. However, as it is now adapted into a loss function within
the system training process, the predicted distributions may take
on arbitrary shapes. Therefore, the BML is computed only for
those predictions that satisfy the criteria of a unimodal Beta dis-
tribution, as constrained by @ > 1 and b > 1. Thatis, 7, = 0
for non-bell-shape data points; otherwise, n, = 1 in Equation
(1). We provide the implemented BML code on github .

3. Experimental Setup
3.1. Speech Emotion Dataset

RECOLA [15] is a widely used French multimodal corpus
for continuous emotion recognition tasks, especially ambiguity
modeling [4]. It consists of 9.5 hours of spontaneous conver-
sation with each utterance spanning 5 minutes. Following the
split rule in the Audio/Visual Emotion Challenge and Workshop
(AVEC) 2016 [16], the utterances number are 9:9 in training
and development sets, respectively. Since the original testing
set is not publicly available, we recompose the a ratio of 8:2:8
for training, validation, and testing, respectively, by designating
the 9*" utterances from both the training and development sets
as our validation set. The remaining 8 utterances from the train-
ing and the development set constitute our primary training and
testing set, respectively, for reporting experimental results.

Each utterance is annotated with continuous arousal and va-
lence ratings within the range of [—1, 1] the by 6 human raters
in a sampling rate of 40ms. Following the suggestion in [13],
the original ratings initially map to the range [0, 1] using a linear
transformation y = 0.4975x + 0.5 to conform to the require-
ments of Beta distributions. To increase the number of sample
points for inferring target distributions and capture temporal in-
formation of the emotion perceptions, we concatenate the rat-
ings from neighboring time frames. Subsequently, the target
distributions are computed from the new label sets following
the steps outlined in Section 2.1.

3.2. Simulating Noisy Condition

To replicate the signal in real world conditions, we added the
noise signal to the original signal in testing set by setting the
SNR level set:{0dB, 5dB, 10dB, 15dB, 20dB, 25dB} to mimic
different noisy conditions. The 5-minute noise signal is ob-
tained by concatenating the randomly selected noise audios
from the noise part of the MUSAN corpus [17], which is a com-
mon dataset used to mimic the noisy condition in several speech
emotion studies [10, 18]. Each utterance in different SNR lev-
els is added by different noise audio combinations to ensure the
noise diversity is sufficient.

3.3. Experimental Setup

Speech feature: The Bag-of-audio-words (BoAW) feature set
is utilized in our experiment owing to its state-of-the-art perfor-
mance in ambiguity modelling tasks [6]. From each utterance,
we extract 39-dimensional MFCCs using a 25 ms window and
a 10 ms hop size with torchaudio [19]. The audio codebook for
BoAW is generated through k-means++ clustering, standardiz-
ing input for each 3-second window length, resulting in a 100-
dimensional features set. The features are extracted using the
openXBOW toolbox [20].

System configurations: Implementation is utilized by PyTorch
1.12.1 [21], with model parameters initialized using PyTorch’s
default settings. For enhanced training efficiency, training
speech utterances are segmented into 3-second chunks, and the

Ihttps://github.com/crowpeter/BMLOSS
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training batch size is capped at 100 due to GPU memory con-
straints. Models are optimized using an Adam optimizer with
learning rate of 0.01. Decay ratios of 0.9, 0.99, and 0.999 are
applied at the 10th, 20th, and 30th iterations, respectively. The
maximum number of iterations is set at 100, with early stopping
based on the best loss performance on the validation set.
Hyperparameters: ~ Hyperparameter tuning is conducted
through grid search, exploring values for distribution charac-
teristic loss weights (1, € [1,20],7, € [1,20]), model dimen-
sions in 32,64,128, and A € {5k|k € [1,6]}. The number
of model parameters are from 25k to 250k, depended on model
dimensions. The total training process spans approximately 48
hours on an Nvidia GeForce GTX 1060 6GB.

Evaluation metric: The distribution characteristics (1 and o) is
evaluated using the CCC as per literature [4], denoted as CC'C),
and CCCy, respectively. Belief Mismatch Coefficient (BMC)
is employed for further evaluating the overall performance of
the system when ambiguity is modelled. All experiments are
tested under 7 noisy conditions, including 6 different levels of
Signal-to-Noise Ratio (SNR) testing sets and the clean (origi-
nal) testing set.

4. Experimental Results

4.1. Experiments Overview

¢ Expl: Impact of Modelling Ambiguity in Noisy Condi-
tions: This experiment aims to assess whether incorporating
ambiguity modelling enhances the noise robustness of CER
systems. We compare two systems: Vanilla vs. Ambiguity.
The Vanilla system does not account for inter-rater ambigu-
ity. It trains two separate models to independently predict
the mean and SD of the target Beta distributions. In contrast,
the Ambiguity model follows the system structure outlined in
section 2, which simultaneously models x and o. It is opti-
mized using the loss function in Equation (1) with 7, = 0.

¢ Exp2: Modeling With Belief Mismatch Loss (BML): This
experiment aims to further evaluate the effectiveness of in-
corporating ambiguity into the system training through the
proposed belief mismatch loss function. We test the model,
denoted as Ambiguity gz, Which is trained using Equation
(1), and compare its performance with both the Vanilla and
Ambiguity models.

4.2. Result Discussion

Predicting valence from speech data is inherently challenging
and tends to yield lower performance, even in clean condi-
tions, compared to arousal [22]. For instance, the CCC), and
CCC, values for the Vanilla model with clean speech data are
0.248 and 0.044, respectively, considerably lower than those for
arousal as indicated in Table 1. Thus, to comprehensively an-
alyze our hypothesis in noisy conditions, we focus exclusively
on the arousal dimension. The best-performing hyperparam-
eter set (Nu, Mo, Haim, A) for reporting the CCC results are
(1,14, 64, 5), respectively.

4.2.1. Expl Result Discussion

Figure 2 illustrates the CCC comparisons between the Vanilla
and Ambiguity models. It is evident that the performance of the
Ambiguity model, in terms of CC'C}, and CC'C,, remains rela-
tively stable as the SNR decreases, with an average degradation
of (0.124, 0.050). In contrast, the performance of the Vanilla
model degrades much faster, with an average degradation of
(0.257, 0.158). The detailed CCC values are also reported in
the first two rows of Table 1. These results strongly support the
hypothesis that incorporating inter-rater ambiguity during train-
ing leads to greater noise robustness in CER systems compared



Table 1: The CCC results of distribution characteristics p and o for experiment 1 and 2 in each noisy condition.

cce,

col,

clean 25dB 20dB 15dB 10dB 5dB 0dB

Avg. | clean 25dB 20dB 15dB 10dB 5dB 0dB | Avg.

Vanilla
Ambiguity

0.661 0.582 0.513 0.436 0.316 0.320 0.257
0.648 0.612 0.614 0.531 0.462 0.470 0.452
Ambiguityparz, |0.662 0.632 0.628 0.552 0.494 0.476 0.459

0.44110.387 0.317 0.351 0.208 0.192 0.188 0.119]0.275
0.541(0.345 0.320 0.319 0.287 0.323 0.269 0.252]0.332
0.558|0.374 0.350 0.347 0.303 0.342 0.291 0.256 | 0.352
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Figure 2: Line chart visualization of CCC results for Vanilla
and Ambiguity.
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Figure 3: BMC comparison across all conditions for Ambiguity
and proposed Ambiguitypsr..

to models that do not account for ambiguity. Additionally, on
average, the Ambiguity model achieves a relative improvement
of (0.100, 0.057) in terms of (CCC),, CCCy) compared to the
Vanilla model, further highlighting the effectiveness of mod-
elling ambiguity in enhancing noise robustness.

4.2.2. Exp2 Result Discussion

Figure 4 illustrates an example (dev4 utterance) of visualisation
of the predicted distributions and the target distributions at an
SNR level of 10dB. The shaded area indicates the p 4+ 1.50 at
each frame. It is obviously seen that the predicted distribution
aligns significantly better with target distributions when am-
biguity is modelled using Ambiguity gasr, while Vanilla loses
ability to track emotions, further indicating the effectiveness of
modelling ambiguity with proposed BML.

The comparison between Ambiguity and Ambiguitygarr,
can be found in the 2"% and 3"¢ rows of Table 1.
Ambiguity g s outperforms in both CCC), and CCC,, across
all conditions, demonstrating a relative improvement of (0.017,
0.020) on (CCC,,, CCCy,), respectively. The results indicate
that learning the overall shape of distributions during training
can benefit ambiguity-aware CER systems in both clean and
noisy conditions.

We further validate the proposed approach using BMC eval-
uations that measure the overall mismatch between the distribu-
tions as depicted in Figure 3. Each box indicates the mode (red
bar) and the 1,; and 3,.4 quartiles of the BMCs evaluated across
the entire testing data. Across all conditions, the original Am-
biguity model exhibits greater sensitivity to noise, as evidenced
by a larger variation in BMC compared to the Ambiguitygasr..
These results significantly support that modelling ambiguity
through the proposed BML enhance noise robustness.

4.3. Analysis: Noise Augmentation Validation

Based on the findings above that modelling ambiguity lead to
noise robustness in CER, it is worth exploring a comparative
analysis between the proposed Ambiguity pasr, model and the
common strategy for building noise-robust system. In this sec-

Table 2: The comparison of noisy augmentation methods.

cce,
Clean 25dB 20dB 15dB 10dB 5dB 0dB_Avg.

Vanilla+Aug  0.582 0.573 0.580 0.569 0.517 0.516 0.582 0.560
Amb.prr  0.662 0.632 0.628 0.552 0.494 0.476 0.459 0.558
Amb. ;3 1 1 +Aug 0.649 0.635 0.645 0.620 0.605 0.542 0.587 0.612

CcClCy,
Vanilla+Aug  0.330 0.322 0.305 0.331 0.317 0.290 0.355 0.351
Amb.pprr, 0.374 0.350 0.347 0.303 0.342 0.291 0.256 0.352
Amb. g psr,+Aug 0.375 0.386 0.322 0.393 0.398 0.321 0.414 0.403
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Figure 4: £ 1.50 on devl with SNR level 10dB.

tions, we compare the two approaches under different noisy
conditions: noise augmentation and proposed Ambiguitygarr,
model. With the similar setting as we described in Section 3.2,
the augmented noisy signals mimic with six levels of Signal-to-
Noise Ratios (SNRs). In each training iteration, one randomly
selected noisy utterance is augmented and jointly trained with
the clean set.

As illustrated in Table 2, noise augmentation performs
better in relatively noisier environments (SNR levels below
15dB), whereas Ambiguity pas 1, achieves better performance in
comparatively cleaner conditions (SNR levels above 20dB and
clean). On average across all conditions, the performance of
the two methods is closely aligned. This evidence demonstrates
that modelling emotion perceptions from different raters, i.e.,
ambiguity, can yield a similar effect to the general noise aug-
mentation method.

When applying noise augmentation to the proposed
Ambiguityparr, the results are further improved across most
conditions, providing the feasibility of integrating ambiguity
modelling with other approaches to further enhance noise ro-
bustness emotion recognition systems.

5. Conclusion and Future Work

In this study, we present a fresh perspective on modelling a
noise-robust system in Continuous Emotion Recognition (CER)
by incorporating inter-rater ambiguity. We introduce a novel
Belief Mismatch Loss (BML) method, enabling the integration
of ambiguity into system training. Experimental results reveal
that ambiguity-aware CER consistently maintains stable per-
formance across various noisy scenarios compared to systems
lacking ambiguity modelling, particularly demonstrating supe-
rior performance when BML is employed during training. In-
terestingly, we observe that ambiguity modelling can yield com-
parable results to traditional noisy augmentation techniques in
noisy environments, and with both approaches being comple-
mentary, combining them leads to performance improvements.
As further analysis of valence performance in noisy environ-
ments was not pursued in this study, future work will focus on
integrating inter-rater ambiguity on valence and signal variabil-
ity caused by noise into the training process.
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