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Abstract
The rapid growth of Speech Emotion Recognition (SER) has
diverse global applications, from improving human-computer
interactions to aiding mental health diagnostics. However, SER
models might contain social bias toward gender, leading to un-
fair outcomes. This study analyzes gender bias in SER models
trained with Self-Supervised Learning (SSL) at scale, explor-
ing factors influencing it. SSL-based SER models are chosen
for their cutting-edge performance. Our research pioneering re-
search gender bias in SER from both upstream model and data
perspectives. Our findings reveal that females exhibit slightly
higher overall SER performance than males. Modified CPC
and XLS-R, two well-known SSL models, notably exhibit sig-
nificant bias. Moreover, models trained with Mandarin datasets
display a pronounced bias toward valence. Lastly, we find that
gender-wise emotion distribution differences in training data
significantly affect gender bias, while upstream model repre-
sentation has a limited impact.
Index Terms: social bias, self-supervised learning, emotion
recognition

1. Introduction
Speech emotion recognition (SER) aims to detect and interpret
emotional states conveyed through speech signals. However,
SER models may capture and learn social bias, leading to po-
tential social harm. Biased SER systems may exacerbate ex-
isting inequalities by disproportionately affecting marginalized
communities. For example, if a system is less accurate in rec-
ognizing emotions in individuals with disabilities, non-native
speakers, or a specific gender, it could further marginalize these
groups by denying them equitable access to services or oppor-
tunities.

While extensive research has addressed bias in various ma-
chine learning domains, such as Automatic Speech Recogni-
tion (ASR) [1, 2, 3], Speech Translation [4, 5], Facial Emotion
Recognition [6], and Automatic Speaker Verification (ASV) [7],
limited attention has been paid to social bias within SER sys-
tems. For instance, Gorrostieta et al. [8] evaluated gender
bias within a specific model and dataset, proposing two adver-
sarial debiasing approaches. However, their analysis was con-
fined to a singular model and only one dataset, potentially lim-
iting its applicability to broader contexts. Similarly, Chien et
al. [9] investigated gender-specific emotion perception using
the IEMOCAP dataset [10], presenting a perceptual emotion
learning framework. Yet, they overlooked the impact of train-
ing dataset selection on emotional bias. This underscores the
need for comprehensive investigations into gender bias across
diverse SER models and datasets to ensure robust and general-
izable results.

Recognizing such research gaps, our study delves into two
inquiries: Firstly, do contemporary SER models exhibit gender
bias? Secondly, what are the primary factors contributing to
such bias? Specifically, we investigate whether upstream rep-
resentations and downstream training data play a crucial role in
shaping bias within these models.

Leveraging the cutting-edge advancements in speech self-
supervised learning (SSL) [11, 12], we employ 15 SSL models
and classical speech features like FBank to train SER systems.
Through rigorous and comprehensive experimentation across
six diverse emotion datasets, we carefully train and assess a to-
tal of 96 SER models.

Our work yields the following contributions:
• We conduct a large-scale evaluation of 15 SER models on

six emotion datasets. Notably, females exhibit slightly supe-
rior overall emotion recognition performance to males, with a
substantial gender-wise performance gap evident across indi-
vidual emotions. Our analysis highlights two models, Modi-
fied CPC [13] and XLS-R [14], as exhibiting the highest bias
in gender-wise SER F1-score differences.

• We found that downstream training data distribution signif-
icantly affects gender bias for models trained with acted
datasets while having a medium correlation with SER per-
formance bias for real-world datasets.

• We analyze the gender-wise F1-score difference on valence.
We observe that “females have higher F1-score on positive
valence while males have higher F1-score on negative va-
lence” is apparent in models trained with Chinese datasets.

• We analyze the correlation between gender-wise upstream
representation bias and SER performance gap between two
genders. We find that SSL upstream representations barely
influence the bias in SER performance.

2. Evaluation design
2.1. SSL model and downstream model

We chose SSL-based SER systems to evaluate gender bias, as
these SOTA models are commonly preferred for emotion eval-
uation [15, 16], potentially amplifying the impact of any bias
present. In the framework of speech SSL, model training con-
sists of two stages. The first stage pre-trains a model (or up-
stream model) using self-supervised learning with a predefined
pretext objective. The second stage uses representation from the
upstream model to train a downstream task such as SER.

We use the SSL-based SER models in [17], which uses
publicly available speech SSL models collected by the S3PRL
toolkit [18]. The upstream models include models trained with
generative approach: DeCoAR 2 [19], Autoregressive Predic-
tive Coding (APC) [20], Vector-Quantized APC (VQ-APC)
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Table 1: Overview of mapping between valence and emotion.
Surprise can have a positive or negative valence.

Valence Emotion

positive Happiness, Excitement, Relax, Joy

negative Anger, Disgust, Contempt, Frustration, Disappointment, Sadness, Fear

both Surprise

[21], Nonautoregressive Predictive Coding (NPC) [22], TERA
[23], Mockingjay (Mock) [24]; models trained with contrastive
approach: Wav2Vec2-XLS-R-1B (XLS-R) [14], Wav2Vec 2.0
(W2V2) [25], Wav2Vec2 Large Robust (W2V2 R) [26], vq-
wav2vec (VQ-W2V) [27], wav2vec (W2V) [28], and Con-
trastive Predictive Coding (M CPC) [13]; models trained with
predictive approach: HuBERT [29], WavLM [30], Data2Vec
(D2V) [31].

We use the same downstream model architecture as the
SER task in the S3PRL toolkit [18], using three Conv1d, a
self-attention pooling, and two linear layers. To capture the
high-dimensional nature of emotion [32], we formulate emo-
tion recognition as a multilabel classification problem. We
first transform the emotion annotations to emotion distribution
by frequency and then apply label smoothing by [33] using a
smoothing parameter of 0.05 to obtain a soft label. We use the
F1 score as the evaluation metric for performance, which aligns
with SER challenges[34] and benchmarks [17]. A label predic-
tion is successful if the output emotion probability distribution
is higher than 1

n
for n emotion classification task. Our models

are trained on Nvidia Tesla V100 GPUs with 32 GB of memory.
The cumulative GPU runtime amounts to approximately 3,300
hours.

2.2. Bias evaluation

In our study, we employ three evaluation metrics to assess gen-
der bias. We hope our evaluation plan can serve as a valuable
reference for others.

2.2.1. F1 score difference

We quantify the gender bias dei on each emotion ei by the dif-
ference of F1 score on gender because F1 score reflects both
precision and recall. Furthermore, we define the corpus-level
gender bias dc by averaging the absolute value of dei for all
emotions ei in the set of all emotion E in the corpus:

dei = F1,eifemale − F1,eimale (1)
dc = meanei∈E |dei |. (2)

We further evaluate the gender bias on valence by Eq. 3.1 The
intuition is calculating the difference of dei from positive va-
lence and negative valence:

dv = Σei∈E+dei − Σei∈E−dei
+Σei∈Eb(p+dei,+ − p−dei,−). (3)

E+, E−, and Eb are the set of emotions in the corpus that be-
long to positive valence, negative valence, and both valence,
respectively. p+ and p− are the portions of speech belonging
to positive and negative valence. dei,+ and dei,− are the dei of
positive and negative valence speech, respectively. The detail of
valence categorization is shown in Table 1, following the study
[35].

1We don’t use absolute value on dv as dc, because we mean to com-
pare it with upstream bias in section 2.2.2

2.2.2. Upstream representation bias on valence

We would like to know whether gender bias in the upstream
model embedding propagates to downstream applications. To
evaluate how the upstream model’s embedding of stimuli rep-
resenting females and males relates to its embedding of stimuli
representing positive and negative valence, we use the Speech
Embedding Association Test (SpEAT) [36] for detecting bias.
SpEAT measures the relative cosine similarity between 4 groups
of stimuli. Let X and Y represent sets of embeddings from fe-
male and male, and let A and B be sets of embeddings for pos-
itive and negative valence, respectively. SpEAT effect size d is
the difference between sums over the respective target concept,
normalized by the standard deviation to compute the magnitude
of association:

ds =
Σx∈Xs(x,A,B)− Σy∈Y s(y,A,B)

std devw∈X∪Y s(w,A,B)
, (4)

where each term is the difference between the mean of cosine
similarity of gender to each valence:

s(w,A,B) = meana∈Acos(w, a)−meanb∈Bcos(w, b).
(5)

In SpEAT, the embedding of speech segments is first done by
averaging embedding in each layer and then averaging the ag-
gregated embeddings across all layers, which we call the Mean
aggregation. We further incorporate representation weights
from SER models to achieve compatibility and comparability
with the SSL paradigm. Assume SSL SER models with n lay-
ers are trained to use ci as the weight for the input representation
weighted sum of ith layer. We use ci to weighted sum embed-
dings across layers, which is called Weighted aggregation. This
enhances the similarity of our representations to those generated
by ER models trained via SSL. We average ci from SER mod-
els trained in different folds for cross-fold validation datasets
defined in [17].

2.2.3. Training data bias on emotion distribution

We evaluate the bias in downstream training data distribution
dd by examining the difference in mean emotion distribution
in training data (soft-label) for males and females. Take an
emotion dataset with 4 emotions (neutral (N), anger (A), sad-
ness (S), and happiness (H)) for example. We compute average
training data distribution, (N,A, S,H) = (0.2, 0.3, 0.4, 0.1)
for females and (N,A, S,H) = (0.1, 0.2, 0.4, 0.3) for males.
Their training data bias is then dd = (0.1, 0.1, 0.0,−0.2). For
datasets with cross-fold validation, we compute the emotion
distribution difference of the whole dataset.

2.3. Datasets

To make our evaluation comprehensive, we evaluate SER per-
formance parity using six emotion datasets with diverse lan-
guages, speaker sources, and emotion types. The datasets in-
clude real-world datasets MSP-PODCAST (POD) [37], BIIC-
PODCAST (BPO) [38], and actor performance datasets MSP-
IMPROV (IMP) [39], IEMOCAP (IEM) [10], BIIC-NNIME
(NNI) [40], CREMA-D (CRE) [41]. BIIC-NNIME and BIIC-
Podcast are in Mandarin, and other datasets are in English.

We follow SpEAT, using the Morgan Emotional Speech Set
(MESS) [42] for valence stimuli in upstream bias evaluation.
We use the emotion datasets with both valence and speaker ID
annotation in SER training (NNI, IMP, POD) as more valence
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Table 2: SER bias on emotion de across 6 emotion datasets and 9 models, in %. The emotions are abbreviated as follows. Angry: Ang,
Disgusting: Disg, Contempt: Cont, Neutral: Neu, Surprise: Sur, Hap: Happy, Frustrated: Fru, Excited: Exc, Disappointed: Disa,
Relax: Rel. Mac represents the macro-F1 score over all emotions

BIIC-PODCAST CREMA-D IEMOCAP

Model Ang Sad Disg Cont Fear Neu Sur Hap Mac Ang Sad Disg Fear Neu Hap Mac Fru Ang Sad Disg Exc Fear Neu Sur Hap Mac

XLS-R 6.3 12.0 0.0 -5.3 -0.9 -24.7 2.3 27.4 2.1 2.2 11.7 -2.8 2.9 -2.6 12.6 4.0 -0.4 7.2 2.2 -1.7 1.8 8.1 -2.5 6.5 7.7 3.2
WavLM 1.8 12.1 0.0 0.7 5.1 -24.1 7.7 28.0 2.9 3.7 11.0 1.3 3.3 -2.6 8.7 4.2 -0.6 6.7 0.7 0.0 2.5 8.9 -2.7 3.0 10.0 3.2
W2V2 R 6.6 7.7 0.0 -5.9 0.0 -25.2 6.7 28.9 2.3 3.1 11.8 -3.0 3.0 -2.6 13.4 4.3 0.4 6.3 2.0 -0.6 1.5 3.1 -3.5 3.8 7.9 2.3
W2V2 -3.3 9.5 0.0 -7.8 1.9 -27.6 8.3 28.8 1.2 1.2 6.4 0.1 4.6 -2.7 5.7 2.6 -1.2 5.3 2.0 0.0 0.5 1.0 -7.0 0.0 7.5 0.9
VQ-APC -1.2 5.0 0.0 -6.3 0.0 -24.7 4.0 29.7 0.9 -1.9 6.9 -5.2 0.7 -3.1 10.7 1.3 -0.2 3.3 2.5 0.0 1.9 9.7 -4.0 -1.1 8.0 2.2
HuBERT 3.8 13.4 0.0 -6.3 2.7 -26.1 4.4 29.3 2.6 2.0 8.0 -1.5 1.9 -2.3 7.9 2.7 -0.3 6.4 2.5 -7.6 -2.0 2.7 -3.0 3.9 7.5 1.1
DeCoAR 2 3.9 2.4 0.0 -8.5 0.0 -24.9 1.7 29.3 0.5 1.9 6.2 -3.3 3.6 -2.6 10.1 2.7 -0.9 3.7 2.8 0.0 1.7 4.6 -4.4 3.4 6.3 1.9
D2V 0.0 8.0 0.0 -8.2 -2.3 -25.3 6.1 28.1 0.7 2.1 8.3 -4.5 4.1 -3.0 2.6 1.6 -0.6 3.3 1.8 0.0 1.3 13.9 -5.1 -3.7 6.9 1.3
APC 3.1 6.3 0.0 -8.4 0.0 -25.9 4.1 29.4 1.1 -0.7 7.5 -4.6 4.6 -2.6 9.7 2.3 -1.0 4.7 2.8 -0.7 0.2 5.4 -4.5 1.0 6.9 2.0
mean 0.7 5.9 0 -4.5 0.4 -25.4 7.1 29.2 1.7 0.9 8.3 -4 3.4 -2.9 9.1 2.5 -0.9 4.8 2.8 -0.7 0.2 5.4 -4.5 1.2 7.0 1.7

MSP-IMPROV BIIC-NNIME MSP-PODCAST

Ang Sad Neu Hap Mac Ang Fru Disa Sad Fear Neu Sur Exc Hap Rel Joy Mac Ang Sad Disg Cont Fear Neu Sur Hap Mac

XLS-R 6.7 9.2 -5.3 6.0 4.1 -6.1 -9.1 -6.8 4.9 2.5 0.3 5.7 11.1 1.2 -1.1 6.0 0.8 10.1 -0.5 -4.1 -6.5 6.3 -3.2 4.5 2.1 1.1
WavLM 1.7 8.4 -6.0 2.6 1.7 -5.9 -9.9 -2.0 3.9 0.2 2.0 7.8 2.5 5.1 11.7 14.0 2.7 9.5 -0.5 -3.3 -0.6 3.6 -3.0 0.6 2.0 1.0
W2V2 R 1.5 9.9 -3.7 4.4 3.0 -10.2 -0.1 -2.9 -1.6 1.0 1.5 18.2 10.1 -2.3 -1.2 3.4 1.5 10.3 -0.9 -7.7 -7.3 3.2 -3.1 3.6 1.8 0.0
W2V2 1.3 8.6 -5.8 1.6 1.4 -8.7 -4.7 -8.0 -0.3 -0.2 0.2 4.2 4.4 -2.8 -1.6 6.1 -1.0 8.6 -1.6 -6.9 -9.2 0.3 -3.4 3.0 2.2 -0.9
VQ-APC -3.5 9.5 -5.1 -1.2 -0.1 -5.3 -7.6 -7.9 1.6 -3.8 -0.6 11.5 6.4 -2.2 0.1 10.1 0.2 7.6 -3.8 0.0 -11.9 0.3 -3.5 3.2 0.9 -0.9
HuBERT 4.4 7.1 -6.3 2.7 1.9 -5.7 -1.9 -5.6 1.5 0.0 1.3 4.7 9.7 2.3 3.2 7.9 1.6 9.4 -1.3 -5.7 -4.9 1.8 -3.1 2.3 1.8 0.0
DeCoAR 2 2.1 9.9 -6.0 0.3 1.6 -5.6 -7.7 -0.3 2.7 -0.8 0.1 12.1 5.7 5.0 -3.2 5.5 1.2 8.5 -2.8 -5.7 -11.3 1.0 -3.3 1.8 1.8 -1.2
D2V 2.0 10.0 -5.5 1.9 2.1 -6.5 -3.9 -5.5 4.9 2.3 0.0 5.7 5.6 0.8 -1.0 1.4 0.3 9.1 -1.2 -4.9 -6.1 1.4 -3.0 5.1 1.8 0.3
APC -0.4 10.6 -6.3 -1.2 0.7 -5.1 -7.3 -4.3 2.5 -1.4 -0.3 9.7 6.7 -2.2 -3.3 8.9 0.3 8.1 -3.6 -1.2 -11.8 0.8 -3.6 3.7 0.9 -0.8
mean 0.6 9.3 -6.1 1.6 1.3 -6.9 -5.7 -3.6 2.0 0.7 0.2 9.6 6.5 1.3 -0.2 6.7 1.0 8.0 -2.7 -2.6 -8.7 1.3 -3.4 3.3 1.4 -0.4

stimuli for fair comparison. We use the Speech Accent Archive
[43] for male and female stimuli. The selection criteria for
stimuli are the same as those for SpEAT, with the goal of en-
suring that differences in association with positive and negative
valence do not stem from variations among the speakers.

3. Result and Discussion
3.1. Downstream performance difference

Table 2 shows the difference in F1 score between females and
males on each dataset and each emotion. Due to space limita-
tions, we report the result for models across 3 different training
objectives and achieve top-9 performance in EMO-SUPERB. It
shows that despite most ER models only exhibiting a slightly
high macro-F1 score for females, a high parity exists between
the F1 score for each emotion. For instance, in the BPO dataset,
males exhibit approximately a 25% higher F1 score than fe-
males for neutral emotion, whereas they demonstrate a 29%
lower F1 score for happy emotion.

The bias observed in emotion F1 scores varies across
datasets but shows a consistent trend across emotion recognition
models. Specifically, we take BPO and POD as examples since
they have identical emotion categories. While the POD dataset
exhibits a slight SER bias de in the happy and neutral emo-
tion, the BPO dataset displays a significant F1 score disparity
in these categories, indicating substantial dissimilarity. Further-
more, all SER models trained with BPO consistently show the
largest de on happy and the smallest de on neutral. Conversely,
all SER models trained with the POD dataset consistently ex-
hibit the highest de values for emotion angry and the lowest for
contempt. These observations underscore the potential correla-
tion between gender bias in SER and the characteristics of the
emotion dataset, with less influence from the upstream model.
We conduct further analysis in section 3.2 and 3.3.

We further compare the average F1 score parity dc across
models and datasets in Table 3(a). It shows that gender bias is
closely related to datasets. SER models trained with BPO ex-
hibit higher dc than those trained with other datasets, while SER
models trained with IEM are less biased. Furthermore, the mean
dc across datasets shows Modified CPC is more biased than all

Table 3: (a) Corpus level (b) Valence gender bias on SER mod-
els in %. Bold texts represent the model is the most biased
within the same corpus.

(a) Corpus level (b) Valence
BPO CRE IEM IMP NNI POD avg BPO NNI IEM IMP CRE POD

XLS-R 9.9 5.8 4.2 6.8 5.0 4.7 6.1 15.1 25.4 -4.3 -9.9 -1.4 -0.5
WavLM 9.9 5.1 3.9 4.7 5.9 2.9 5.4 10.7 37.2 1.2 -7.5 -10.5 -5.2
W2V 10.3 5.8 3.1 4.9 4.1 4.6 5.5 26.4 11.4 2.2 -11.9 -4.8 7.0
W2V2 R 10.1 6.1 3.2 4.9 4.8 4.7 5.6 20.8 8.1 0.1 -7.0 -1.4 3.0
W2V2 10.9 3.5 2.7 4.3 3.7 4.4 4.9 27.5 24.8 9.4 -8.4 -6.7 9.9
VQW2V 8.9 4.7 3.0 5.3 3.6 4.1 4.9 26.4 17.2 -1.6 -8.6 -6.3 1.2
VQ-APC 8.9 4.7 3.4 4.8 5.2 3.9 5.2 32.9 31.8 -4.8 -7.2 10.2 8.3
TERA 8.4 5.6 3.3 5.0 5.1 4.6 5.3 33.6 34.9 4.6 -9.5 1.8 9.2
NPC 8.9 6.8 2.7 5.6 5.4 4.7 5.7 44.2 22.9 3.8 -8.9 11.1 19.2
M CPC 11.3 6.0 3.7 6.3 6.3 3.9 6.3 41.0 8.7 -4.2 -5.3 11.1 8.6
Mock 9.2 6.3 3.5 4.5 5.0 3.4 5.3 30.8 33.4 2.6 -9.6 10.5 9.3
HuBERT 10.7 4.0 4.0 5.1 4.0 3.8 5.2 14.5 31.4 2.8 -8.8 -2.6 3.4
FBANK 7.6 0.6 3.2 2.6 1.3 0.7 2.7 36.0 5.4 -17.8 3.5 0.0 -1.3
DeCoAR 2 8.8 4.6 3.1 4.6 4.4 4.5 5.0 34.3 21.4 1.8 -11.8 1.7 12.5
D2V 9.8 4.1 2.9 4.9 3.4 4.1 4.9 28.9 13.0 0.8 -10.1 -7.4 2.4
APC 9.6 4.9 4.1 4.6 4.7 4.2 5.4 28.8 14.0 -2.4 -11.5 2.8 8.1

the other models, while XLS-R shows the most biased result on
a majority of emotion datasets. Conversely, the baseline fea-
ture, FBank, shows less bias across corpora. This is caused by
its low classification accuracy and recall of models trained with
this feature.

Also, we analyze the gender bias on valence dv by observ-
ing whether females have higher F1 scores on positive valence
and males have higher F1 scores on negative valence. The re-
sult in Table 3 (b) indicates that SER models trained with Chi-
nese datasets (BPO and NNI) have higher dv than SER models
trained with English datasets, and these models associate fe-
male speech with positive valence and male speech with neg-
ative valence. In contrast, SER models trained with English
datasets demonstrate positive and negative dv values across dif-
ferent datasets, suggesting a more varied impact.

Since the downstream model architecture is the same across
all SER models trained with SSL fashion, the bias may only
come from two possible sources: training data and upstream
representation. We try to find out the most influential factor of
gender bias via the following experiments.
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Table 4: Pearson correlation coefficient between F1-score gap
on gender de and training data distribution difference.

Model BPO CRE IEM IMP NNI POD

XLS-R 0.31 0.78 0.64 1.00 0.62 0.48
WavLM 0.43 0.88 0.58 0.92 0.66 0.40
W2V 0.40 0.74 0.73 0.70 0.39 0.34
W2V2 R 0.34 0.77 0.74 0.86 0.35 0.43
W2V2 0.53 0.96 0.79 0.89 0.62 0.46
VQW2V 0.34 0.76 0.75 0.86 0.73 0.22
VQ-APC 0.47 0.69 0.50 0.61 0.61 0.38
TERA 0.44 0.76 0.66 0.80 0.60 0.40
NPC 0.52 0.69 0.63 0.65 0.46 0.46
M CPC 0.62 0.62 0.78 0.59 0.53 0.28
Mock 0.48 0.68 0.64 0.94 0.65 0.41
HuBERT 0.39 0.82 0.63 0.98 0.55 0.42
FBANK 0.47 0.87 0.94 0.89 0.56 0.48
DeCoAR 2 0.36 0.78 0.72 0.85 0.64 0.45
D2V 0.48 0.76 0.70 0.87 0.63 0.40
APC 0.40 0.78 0.41 0.75 0.65 0.39

3.2. Downstream training data distribution

We evaluate the Pearson correlation coefficient between train-
ing data distribution bias dd and the F1-score gap between gen-
der [de1 , de2 , ...dei ] on dataset with i emotions e1, e2...ei. Ta-
ble 4 (a) reveals significant correlation coefficients for datasets
featuring acted performances (CRE, IEM, IMP, NNI), suggest-
ing a strong influence of data source on bias. Conversely, real-
world datasets (BPO and POD) exhibit moderate correlation.
This observation underscores the importance of considering the
variance in emotion distribution across diverse social groups, as
it might propagate to SER performance.

3.3. Upstream representation

We first evaluate the upstream representation bias using SpEAT.
As showcased in Table 5, our findings unveil substantial levels
of representation bias across most models, especially VQ-APC,
NPC, and APC, which have larger ds values. In contrast, D2V
and M CPC have smaller gender biases among these models.
Moreover, our analysis reveals that aggregating layerwise rep-
resentations via weighted sum yields consistent outcomes akin
to mean pooling, underscoring the robustness and stability of
our bias evaluation metric across diverse SER tasks.

We further evaluate the Pearson correlation coefficient be-
tween the downstream F1 score gap on valence dv and upstream
bias on valence ds among all models. Table 6 shows low or no
correlation between upstream and downstream valence bias on
different stimuli and aggregation methods. This implies gen-

Table 5: Upstream representation bias ds measured on mod-
els with different representation aggregation methods. ’mean’
denotes taking the average embedding over all layers. Other
columns named by datasets denote using the weighted sum of
embedding from ER models trained with the dataset.

Model mean BPO CRE IEM IMP NNI POD

XLS-R 1.06 1.08 1.06 1.06 1.06 1.06 1.08
WavLM 1.43 1.43 1.43 1.43 1.43 1.43 1.48
W2V 1.33 1.35 1.34 1.36 1.36 1.35 1.35
W2V2 R 0.29 0.79 0.86 0.89 0.87 0.76 0.83
W2V2 0.58 0.58 0.56 0.58 0.57 0.58 0.57
VQW2V 0.67 0.65 0.61 0.64 0.65 0.65 0.66
VQ-APC 1.77 1.76 1.75 1.75 1.75 1.76 1.77
TERA 1.38 1.43 1.43 1.42 1.43 1.42 1.43
NPC 1.69 1.70 1.69 1.69 1.69 1.70 1.70
M CPC 0.53 0.55 0.57 0.52 0.52 0.52 0.59
Mock 1.05 1.06 1.06 1.06 1.06 1.07 1.06
HuBERT 0.99 1.03 0.99 0.99 0.99 0.99 1.02
DeCoAR 2 1.49 1.46 1.48 1.48 1.48 1.48 1.46
D2V 0.45 0.58 0.49 0.44 0.45 0.46 0.50
APC 1.66 1.68 1.69 1.68 1.68 1.68 1.69

Table 6: Pearson correlation coefficient between F1-score gap
on gender de and upstream representation bias ds using differ-
ent valence stimuli and aggregation methods (Aggr.).

Stimuli Aggr. BPO CRE IEM IMP NNI POD

MESS Mean 0.06 0.31 0.31 -0.56 0.56 0.44
Weighted 0.01 0.33 0.34 -0.58 0.53 0.42

NNIME Mean -0.45 -0.37 -0.01 0.02 -0.22 -0.43
Weighted -0.47 -0.39 -0.03 0.03 -0.22 -0.46

IMPROV Mean 0.20 0.44 0.06 -0.31 0.11 0.38
Weighted 0.13 0.45 0.07 -0.33 0.09 0.32

PODCAST Mean -0.30 -0.16 -0.09 0.04 -0.03 -0.32
Weighted -0.25 -0.13 -0.10 0.03 0.06 -0.29

der bias in upstream representation might hardly propagate to
downstream emotion classification tasks, which contradicts the
conclusion in SpEAT. Two possible reasons might contribute
to the difference between our work and SpEAT: (1) SpEAT
trains the downstream valence prediction model with only 1800
speech samples, while we train multilabel emotion classifica-
tion models and then calculate the difference between gender
F1 parity of positive and negative valence emotions, with at
least 4000 speech samples per model. (2) SpEAT asserts that
the group identified as positive valence by the pre-trained model
tends to exhibit a similar association with positive valence in
the downstream SER model, framing the challenge as a binary
classification problem. However, our analysis transcends binary
classification by discussing the correlation between metrics rep-
resenting continuous scales that reflect the extent of association
between upstream and downstream bias. Our analysis suggests
that we should use upstream bias metrics carefully as the bias
might not reflect in application-level performance.

4. Discussion and Limitation
Gender is a spectrum rather than a solely male/woman binary
[44]. However, existing speech emotion classification dataset
datasets only have labels on binary gender. Including a broader
range of gender identities in the dataset would better reflect the
reality of human diversity and improve the performance and
fairness of the models, which can be our future work.

5. Conclusion and Future Work
This work provides extensive insights into the gender bias in
SER models trained with the SSL paradigm. We identify that
females exhibit superior overall SER performance compared to
males. Also, a substantial gender-wise performance gap ex-
ists across individual emotions. Furthermore, our investigation
underscores the influence of dataset characteristics, revealing
Mandarin datasets to exhibit a pronounced bias toward valence
compared to their English counterparts. Importantly, we find
that downstream training data distribution plays a pivotal role in
exacerbating gender bias, while upstream representation exerts
minimal influence. These findings have far-reaching implica-
tions for developing ER technologies. Our forthcoming efforts
aim to rectify biases inherent in these ER systems. Our research
sets the stage for more inclusive and ethical approaches to de-
signing and deploying AI systems.
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