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Abstract
Speech recordings frequently encounter a variety of distor-

tions, making the task of eliminating them essential yet chal-
lenging. In this study, leveraging the current success of score-
based generative modeling (SGM), we propose a novel noise-
robust bandwidth expansion (BWE) framework based on an in-
novative parameterized stochastic diffusion process, achieved
through stepwise bandwidth expansion in the spectrogram. Our
proposed Step-Wised Bandwidth Expansion (SWiBE) method
outperforms baseline approaches over considered metrics, in-
cluding the current state-of-the-art noise-robust BWE model
and various diffusion and GAN-based models. Moreover, we
analyze the interaction between the hyperparameters and per-
formance across different aspects including perceptual quality
and spectral reconstruction. Our findings reveal that the score-
based model manifests distinct characteristics under varying pa-
rameterizations.
Index Terms: bandwidth expansion, speech enhancement,
score-based generative modeling

1. Introduction
Bandwidth expansion (BWE), also referred to as audio super-
resolution, is a task that aims at bridging the gap between au-
dio signals at a low sampling rate and a high sampling rate.
By restoring the lost high-frequency components, BWE recon-
structs essential information, improving the intelligibility and
quality of speech signals. Moreover, this restoration not only
enhances the listening experience but also benefits downstream
tasks such as automated speech recognition (ASR) and speech
synthesis, where clear and well-formed speech signals are es-
sential for accurate processing. Moreover, as the real-world
speech recordings inevitably contend with a multitude of dis-
turbances stemming from either interference or device artifacts,
including background noise, reverberation, clipping, etc, ensur-
ing the robustness of in-the-wild BWE performance has also
become an important research direction [1].

When focusing on BWE, previous studies can be broadly
classified into regression-based approaches (i.e., direct mapping
methods) and generative methods. Regression-based methods
have received attention due to their utilization of neural net-
work architectures, aiming at address the temporal patterns of
speech signals through various modules, either in the time or
frequency domain [2, 3, 4, 1]. Conversely, generative methods
do not directly establish a mapping between narrow-band in-
put and wide-band output. Instead, they model the underlying
patterns or distributions from a provided database and gener-
ate speech samples by emulating the probability distribution.
Notable among generative methods are generative adversar-
ial networks (GANs) [5, 6] and diffusion probabilistic models

[7, 8, 9, 10, 11], which have shown leading-edge performance
and attracted considerable interest in the field.

Specifically, diffusion probabilistic models [12, 13, 14]
are nowadays particularly popular for their exceptional per-
formance in addressing a wide range of distortions within the
speech enhancement domain [15, 16, 17]. For instance, Serr‘a
et al. [18] introduced a universal speech enhancer employing
score-based diffusion to address 55 different distortions con-
currently, while Richter et al. [17] proposed a model for both
speech enhancement and speech dereverberation, offering em-
pirical insights into the diffusion process along with a theoreti-
cal exploration. These studies have tested various forms of dis-
tortion on diffusion models and has become the current SOTA
methods. In these methods, distinctive types of distortions are
treated equally through similar diffusion processes. However,
we argue that different types of distortion may involve distinct
underlying diffusion processes. In other words, to align with
the unique characteristics observed in each type of distortion,
tailored diffusion processes should be devised. For instance, in
the context of BWE, band limitation poses a distinctive chal-
lenge by truncating specific information within the speech sig-
nal, in contrast to noise addition. Directly applying the com-
monly used diffusion process for noise removal might not yield
the optimal solution. This is because the diffusion process de-
signed for general purpose enhancement would lead models to
fill the lost high-frequency parts in the first few steps and then
refine the high-frequency components gradually in the subse-
quent steps. Instead, a more intuitive strategy would involve
progressively filling the frequency band from low-to-high in a
step-by-step manner.

In this work, based on score-based generative modeling
(SGM), we propose SWiBE (Step-Wised Bandwidth Expan-
sion), a parameterized stochastic diffusion process specifically
designed for noise-robust BWE. SGM emerges as the SOTA
diffusion model, involving a process to maximize the log-
likelihood of data points x within an underlying data distribu-
tion p(x). Our approach under the SGM framework delineates
a process from narrow-band to wide-band, making the diffu-
sion process within the data distribution p(x) become a shift
across different sampling rates. We evaluate our method on the
noise-robust BWE task (8k to 16k) and our results demonstrate
superior performance across all considered metrics compared
to both the generative model baselines and the current SOTA
noise-robust BWE model [1]. Additionally, we parameterize
the diffusion process in order to control the overall expansion
trajectory. With the parameterization, we conduct an exper-
imental analysis to explore the characteristic differences as a
function of parameter choices. Our experimental result reveals
clear trends in metrics of perceptual quality and spectral recon-
struction under different parameterizations.
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Figure 1: A visualization of the proposed Bstep in the diffusion process of SWiBE, where x1 and x0 denotes to noise perturbed 8k
signal and clean 16k siganl, respectively.

2. Approach
In this section, we describe our proposed SWiBE by elucidating
the design of the stochastic diffusion process, with a focus on
the adaptation made for BWE.

2.1. Modeling backbone

In this work, we choose SGMSE [17, 19], an SGM-based
speech enhancement and dereverberation framework, as the
backbone. SGM [20, 14], served as the fundamental struc-
ture behind SGMSE, is a category of diffusion models de-
signed to model the gradient of log probability density function
▽x log p(x), i.e., the score function, from the data distribu-
tion p(x). The overall generation process involves calculating
the score function while simultaneously perturbing the training
data with noise, resulting in a gradual shift on p(x) to maxi-
mize the log-likelihood. Consequently, the score-based model
sθ(x, t) ≈ ▽x log pt(x) is defined as the score function pre-
dictor, where pt(x) is the marginal distribution under different
levels of noise perturbation on p(x).

Song et al. in [14] models the noise perturbation procedure
in SGM as a continuous time stochastic process and formulated
it into a stochastic differential equation (SDE). In SGMSE, the
SDE is rewritten with the introduction of the noisy speech signal
y and can be expressed as:

dxt = f(xt,y)dt+ g(t)dw (1)

where xt is the current state on the distribution pt(x), indexed
by the continuous time variable t ∈ [0, T ], f(xt,y) is a vector-
valued function called the drift coefficient, g(t) is a real-valued
function called the diffusion coefficient, and w denotes a stan-
dard Brownian motion. In accordance with the SDE, a corre-
sponding reverse SDE exists, which is used for sample genera-
tion. SGMSE defined the equation as follows:

dxt = [f(xt,y)− g2(t)▽x log pt(xt|y)]dt+ g(t)dw̄ (2)

where dt represents a negative infinitesimal time step from
t = T to t = 0. Utilizing the reverse SDE, the score-based
model can generate samples by transforming the prior distribu-
tion pT (x) back into the data distribution p0(x).

2.2. Stochastic diffusion process for BWE

In SWiBE, we follow the formulation of SDE and reverse SDE
in equation 1 and equation 2. The difference is that, in our work,

the SDE delineates a function that gradually distorts xt from
clean 16k to noisy 8k with x0 and y representing the clean 16k
signal and the noisy 8k signal, respectively. To achieve this
objective, the drift coefficient f is defined as:

f(xt,y) := γ(Fb(y)− Fb(xt)) (3)

where Fb denotes an ideal low-pass filter with a cutoff fre-
quency b, and γ is a constant called stiffness, determining the
transition from x0 to y. The diffusion coefficient g follows the
definition of SGMSE which can be expressed as:

g(t) = σmin(
σmax

σmin
)t
√

2 log(
σmax

σmin
) (4)

where σmin and σmax are parameters used to control the noise
schedule. Consequently, once the score ▽x log pt(xt) of each
marginal distribution pt(xt) is determined, we can derive the
reverse diffusion process from the reverse SDE and simulate it
to sample the clean 16k signal x0 from p0.

It is noteworthy in equation 3 that as t approaches 0,
b increases accordingly, making xt1 an audio with higher-
sampling-rate than xt2 for 0 ≦ t1 < t2 ≦ 1. This adjustment
transforms the forward process into a noise perturbation and
downsampling procedure while the reverse process becomes a
denoising upsampling procedure as illustrated in the left-hand
side of Figure 1. This may help the score-based model un-
cover the data distribution p(x) consisting of audio samples
with different sampling rates. In particular, b can be derived
from the function Bstep(t) called bandstep, which is depicted
as the green curve in Figure 1 and can be written as follows:

B(t) = log(10 + λ− 9(t− tϵ)

1− tϵ
) (5)

Bstep(t) = B(t)/B(α) (6)

b =

{
ftgt ∗ Bstep(t)+1

ftgt/fsrc
if Bstep(t) <= 1

ftgt if Bstep(t) > 1
(7)

where t ∈ [0, 1], tϵ is the minimum time in practical imple-
mentation, α ∈ [tϵ, 1), λ ∈ [0,∞), and ftgt and fsrc denotes
the target sampling rate and the source sampling rate for BWE,
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expressed in Hz. In our case, ftgt and fsrc are 16k and 8k, re-
spectively, but they can be generalized to any chosen combina-
tion of source and target sampling rate. The variations of Bstep

over time steps according to α and λ are shown in the right-
hand side of Figure 1. As illustrated, α and λ are used to reg-
ulate the overall expansion trajectory. Specifically, α governs
the saturation speed, in which, as α increases, the score-based
model accelerates its progression toward complete expansion,
which makes the input audio expand rapidly from 8k to 16k and
spend the remaining time on refining and denoising. On the
other hand, λ controls the starting point of expansion; a higher
value of λ results in a starting point with a higher frequency,
thereby smoothing the expansion curve.

2.3. Score-based model training

The score-based model training is done by estimating the score
function ▽x log pt(xt) with the use of denoising score match-
ing [21, 22], involving minimizing the term

Et,x0,xt|(x0,y)w(t)[∥sθ(xt,y, t)−▽x log pt(xt|x0,y)∥22] (8)

over uniformly sampled t ∈ [0, 1], x0 ∼ p0(x), and xt ∼
p0t(xt|x0,y), where w(t) is a positive weighting function. In
the equation 8, p0(x) is already known, while the transition ker-
nel p0t(xt|x0,y) can be solved by computing the closed-form
solution of mean and variance of xt with the equations men-
tioned in [23, Chapter 5-5]. Accordingly, we can sample xt

with the equations below:

xt = µ(x0,y, t) + σ(t)z (9)

µ(x0,y, t) = e−γtFb(x0) + (1− e−γt)Fb(y) (10)

σ(t)2 =
σ2
min((σmax/σmin)

2t − e−2γt)log(σmax/σmin)

γ + log(σmax/σmin)
(11)

where t ∼ U [tϵ, 1] and z ∼ NC(z; 0, I).
Finally, the loss term of the score-based model, as shown in

[17], can be rewritten from equation 8 to:

argmin
θ

Et,x0,xt|(x0,y)w(t)[∥sθ(xt,y, t) + z/σ(t)∥22] (12)

where we select w(t) to be g(t)2 as suggested by Song et
al. in [24]. In practical implementation, score-based model
sθ(xt,y, t) takes xt, t, and y as input, outputs the score in
each marginal distribution, implying the relationship between
different sampling rates, and finally updates the model using
equation 12. Here, y serves as a conditioner, and to provide ad-
ditional information for the score-based model, we append the
high-frequency part with the low-frequency component for xt

when it has not fully expanded yet.
The network utilized in this study is NCSN++ [14], which is

adapted for complex spectrogram input as described in [17]. It
is a U-net-structured conditional network composed of several
downsampling and upsampling residual blocks. The continu-
ous time variable t is fed into the network with random Fourier
feature embeddings [25].

3. Experiment
3.1. Database

In this study, we use the VoiceBank-DEMAND dataset [26] as
the primary dataset. It is an English corpus comprises 28/2

speakers for the training/testing set. The dataset provides both
the clean version and noisy version where the noisy one is
mixed with noise sourced from DEMAND [27]. The training
set has 40 noisy conditions, and the testing set has another 20
different noisy conditions. We downsample the clean utterances
to 16k from the original 48k as our reconstruction target x0.
Meanwhile, the noisy 8k signal y is generated by first down-
sampling the noisy utterance to 8k and then upsampling to 16k
using sinc interpolation. For validation, we split speakers p226
and p227 from the training set. In our setup, we have an 8-
hour 48-minute training set, a 34-minute testing set, and a 38-
minute validation set, containing 108030, 824, and 742 pieces
of speech, respectively.

3.2. Experimental setup

In our experiments, the training speeches are transformed into
complex-valued spectrograms with an FFT length of 510 and a
hop length of 128, which is then cropped into samples with 256
STFT frames. The model is optimized by Adam optimizer with
a learning rate of 1e-4 and a batch size of 8 for 150 epochs. Ex-
ponential moving average (EMA) is applied to parameters when
sampling [28], with an EMA rate of 0.999. γ in equation 3 is
set to 1.5, while σmin and σmax in equation 4 are set to 0.05 and
0.5, respectively. A grid search is applied to Bstep in equation 6
by varying α and λ from {0.03, 0.15, 0.25, 0.5} and {0.0, 0.7,
1.5, 5.0}, respectively. Our model in table 1 is selected with
the best performance across all metrics. During inference, we
utilize the Predictor-Corrector samplers [14] as the SDE solver,
with a combination of reverse diffusion predictor and annealed
Langevin dynamics corrector. The number of reverse steps is
set to 30. Our framework is trained on NVIDIA A100 80GB,
and model selection is based on validation performance. The
time and memory costs for training and inference are approx-
imately {24, 6} GBs and {30, 1.5} hours, respectively. Our
source code can be found in the Github link1.

3.3. Evaluation metrics

We employ several metrics for model evaluation. For recon-
struction performance, SNR (Signal-to-Noise Ratio) assesses
the waveform reconstruction, while LSD (Log Spectral Dis-
tance) evaluates the spectrogram reconstruction. PESQ [30]
(Perceptual Evaluation of Speech Quality) gives the percep-
tual quality, and ESTOI [31] (Extended Short-Time Objective
Intelligibility) represents speech intelligibility. CSIG, CBAK,
COVL [32] are metrics often used for speech enhancement
evaluation, which represents the mean opinion score (MOS) of
speech distortion, intrusiveness of background noise, and over-
all processed speech quality, respectively. Within these metrics,
the lower value of LSD is better, otherwise the higher is better.

3.4. Baseline models

To compare our proposed method SWiBE, we consider five
baselines approaches including a regression-based network,
a GAN-based network, and three diffusion model-based net-
works. In this study, all models are implemented with the pub-
licly available source codes.

The first baseline model, EP-WUN [1], is a noise-robust
BWE model trained using a modified triplet loss on the model
embedding domain to adapt the entire representation toward a
clean space. The second model, CMGAN [29], is a Conformer

1https://github.com/alexlinander/SWiBE
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Table 1: Metric result on VoiceBank-DEMAND test set, as R and G denote regression-based and generative methods, respectively.
The 95% confidence interval is computed for SWiBE, showing as follows: [15.75, 16.18] for SNR, [2.79, 2.87] for PESQ, [0.846, 0.859]
for ESTOI, [1.04, 1.05] for LSD, [3.81, 3.88] for CSIG, [3.29, 3.35] for CBAK, and [3.30, 3.38] for COVL.

Model type #Params SNR↑ PESQ↑ ESTOI↑ LSD↓ CSIG↑ CBAK↑ COVL↑
Unprocessed * * 8.78 1.96 0.771 2.98 1.00 2.41 1.06
EP-WUN [1] R 4.58M 14.67 2.25 0.810 1.06 3.50 2.94 2.86
CMGAN [29] G 1.83M 2.36 2.21 0.784 1.70 2.40 2.60 2.30
CDiffuSE [15] G 4.28M 11.67 2.22 0.738 1.40 3.10 2.72 2.64
NU-Wave2 [8] G 1.7M 12.01 1.86 0.761 1.13 3.11 2.67 2.46
SGMSE+ [17] G 65.6M 15.85 2.82 0.851 1.13 3.77 3.30 3.30

SWiBE G 65.6M 15.97 2.83 0.852 1.04 3.84 3.32 3.34

(convolution-augmented transformer)-based Metric GAN that
utilizes two-stage conformer blocks in a generator and a met-
ric discriminator, achieving great performance on speech en-
hancement. The remaining are diffusion model-based methods,
including: CDiffuSE [15], a conditional diffusion probabilistic
model for speech enhancement which incorporates characteris-
tics of the observed noisy speech signal into the diffusion and
reverse processes; NU-Wave2 [8], a diffusion model for neural
audio super-resolution that generates 48k Hz audio signals from
inputs of various sampling rates with a single model; SGMSE+
[17], a score-based generative model in the complex STFT do-
main for both speech enhancement and speech dereverberation.

4. Results and Analyses
4.1. Baseline comparison

Table 1 shows the comparison between SWiBE and other base-
lines for reconstructing clean 16k speech signals from noisy 8k
speech signals, evaluated on the VoiceBank-DEMAND test set,
with the demonstration of the corresponding method type and
the model size. SWiBE in Table 1 is obtained with hyperpa-
rameters set as α = 0.25 and λ = 0.7. The 95% confidence
interval of SWiBE is also provided.

Overall, our proposed SWiBE demonstrates superior per-
formance across all metrics. In perceptual quality measure-
ments such as PESQ and STOI, while SGMSE+ has already
shown outstanding performance, SWiBE achieves further im-
provement. Additionally, compared with SGMSE+, SWiBE ob-
tains better CSIG and CBAK scores, indicating that SWiBE at
the same time achieves better speech signal preservation and
improved noise suppression. When considering spectral re-
construction, generative methods commonly show poorer LSD
scores although achieving competitive performance on other
metrics. This is in contrast to the great LSD score obtained
by the regression-based EP-WUN. Nevertheless, SWiBE shows
significant improvement with a 9% and 2% reduction in LSD
score compared to SGMSE+ and EP-WUN, respectively. The
result implies that the stochastic diffusion process in SWiBE op-
erates more proficiently, especially regarding expansion in the
frequency domain, which may be facilitated by the stepwise ex-
pansion strategy.

4.2. Effect on parameterized stochastic diffusion process

With the utilization of Bstep formulated from equation 6, ad-
justments to α and λ allow us to delineate distinct expansion
trajectories in the reverse process, as illustrated in Figure 1. To
assess the impact of these expansion paths on model character-
istics and the quality of reconstructed speech, we conduct an ex-

𝜆
(a) PESQ

𝜆
(b) LSD

Figure 2: Speech quality metrics variation along to α, i.e., dif-
ferent saturation speed, under different λ, i.e., different starting
bandwidths.

perimental grid search on varying α and λ. The results are pre-
sented in Figure 2, which depicts the variations of PESQ scores
in 2a and LSD scores in 2b, along different saturation speeds.
Each line in the graph represents a different starting bandwidth,
delineated by different colors. As shown, the PESQ curves
demonstrate an overall trend that as the starting bandwidth in-
creases, the model produces reconstructed speeches with higher
perceptual quality. In contrast, the LSD curves suggest that
a lower starting bandwidth leads to better spectral reconstruc-
tion. Among these trends, a model with λ = 0.7 appears to
achieve the best balance, as there is a positive correlation be-
tween higher perceptual quality and poorer spectral reconstruc-
tion. Regarding the impact on different saturation speeds, we
observe from the LSD curves that α = 0.15 or 0.25 may be the
most appropriate since higher or lower speeds tend to result in
poorer spectral reconstruction.

5. Conclusion
In this paper, we propose SWiBE, an SGM-based noise-robust
BWE framework featuring a BWE-focused stochastic diffusion
process. Our proposed SWiBE exhibits superior performance
across all considered metrics, notably showing significant im-
provement in LSD score compared to other generative methods.
This underscores the effectiveness of the score-based model de-
rived from our diffusion process in understanding frequency do-
main expansion. Additionally, we parameterize our diffusion
process to enable expansion along distinct trajectories, reveal-
ing diverse model characteristics influenced by varying hyper-
parameters. However, the relationship between these variations
and downstream tasks like ASR remains unexplored. Moreover,
our study is limited by its focus on specific metrics, hence, our
future research will expand the analysis to assess how different
diffusion processes affect downstream tasks, alongside conduct-
ing comprehensive investigations into various metrics.
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