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Abstract
Automatic speech recognition (ASR) is crucial for all users,

but adapting it for Alzheimer’s disease (AD) faces challenges
due to irregular speech patterns and privacy concerns. Feder-
ated learning (FL), a privacy-preserving algorithm, is a solu-
tion. However, FL ASR suffers from acoustic and text hetero-
geneities. While advanced model-based and cluster-based FL
methods aim to address the issue, they lack a direct mechanism
for high intra-speaker heterogeneity exhibited by AD individ-
uals and ASR-related properties. This study presents cluster-
based personalized federated learning (CPFL), a strategy miti-
gating heterogeneity by clustering ASR output token using the
proposed CharDiv, a metric for pause and word usage distri-
butions. Evaluation on the ADReSS challenge dataset shows a
3.6% improvement in word error rate (WER). Analysis of per-
cluster WER improvements and CharDiv distributions indicates
reduced heterogeneity, emphasizing pause usage as a potential
key factor in AD-oriented ASR.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Automatic speech recognition (ASR) is vital in modern life,
enhancing human-machine interaction and showing potential
in assisting early detection of neurocognitive disorders like
Alzheimer’s disease (AD) [1, 2]. AD, the most common type
of dementia that is irreversible and incurable, mostly affecting
the elderly [3], poses two key challenges for effective ASR gen-
eralization. First, distinctive speaking traits of individuals with
AD, like disfluent speeches with longer pauses [4], create great
intra-speaker variations, complicating the task compared to reg-
ular speech patterns [5]. Second, privacy preservation, crucial
for those with diseases concerned about personal information
exposure, adds complexity to the challenge, limiting data usage
in clinical facilities. These issues highlight the need for large-
scale data, hindered by privacy concerns. Federated learning
(FL), an algorithm offering a non-data-sharing training scheme
that encourages joint training from clinical facilities [6], is an
appealing approach for privacy-preserved AD-oriented ASR.

FL for ASR holds promise but presents complexities be-
yond other FL applications [7, 8], which are compounded by
added acoustic and text heterogeneity, involving diverse vo-
calizations, prosody, and word usage in individuals with AD.
Recent FL approaches tackle heterogeneity in two main as-
pects: model and cluster. For the model aspect, approaches
fall into two categories: generalization and personalization.
Generalization algorithms, like FedAvg-DS [9] and FedProx
[10], regulate individual client weights before aggregation to
achieve global models. However, a one-size-fits-all model may

not suit highly heterogeneous datasets. Personalization algo-
rithms, such as federated mutual learning (FML) [11], imple-
ment dual-model approaches for each client, facilitating the
information exchange model and the refining model for local
data. While these methods provide corresponding models for
different clients, locally personalized models may struggle with
significant heterogeneity within client data, where differences
within samples from the same client can exceed those between
samples from different clients, leading to reduced performance.
In contrast, FL approaches for the cluster aspect enable similar
samples or clients to have corresponding cluster models target-
ing specific problems, offering a more effective solution to the
challenges in AD-oriented ASR.

While recent cluster-based FL methods show promise in ad-
dressing heterogeneity, their suitability for AD-oriented ASR
remains unclear, particularly concerning the clustering unit and
metric. For instance, personalized clustered FL (PCFL) [12]
clusters clients based on model weights. However, in the con-
text of AD, where intra-speaker heterogeneity can exceed inter-
speaker heterogeneity, a more rational approach might involve
clustering based on individual samples rather than grouping
clients or speakers. Similarly, community-based FL (CBFL)
[13] clusters clients’ data using embeddings derived from the
data. However, for ASR end-to-end models, a more suitable
clustering approach involves grouping based on ASR output for
accurate result prediction. These gaps underscore the urgent
need for effective cluster-based FL strategies to tackle the het-
erogeneity specific to AD-oriented ASR tasks, considering both
the appropriate clustering unit and metric, to optimize FL-based
ASR performance.

This study introduces a novel cluster-based FL method tai-
lored for AD-oriented ASR training, with a focus on mitigating
heterogeneity issue through text token-based clustering strategy.
Our approach comprises two key components: the cluster-based
ASR system and the clustering metric. The cluster-based ASR
system utilizes the cluster-based personalized FL (CPFL) strat-
egy, which organizes clusters and assigns clients to train ASR
models federally, based on data from corresponding clusters.
Clusters are formed using clients’ samples with similar char-
acter diversity (CharDiv), our proposed clustering metric cap-
turing pause and word usage distributions based on ASR’s out-
put tokens while ensuring privacy by not revealing actual spo-
ken content. This helps mitigate heterogeneity of FL learning
strategy. Evaluation on the ADReSS challenge dataset [14] in-
cluding samples from healthy elderly individuals and those with
AD, demonstrates our approach’s superiority over various other
FL approaches, achieving a 3.6% reduction in word error rate
(WER) [15]. Analysis of per-cluster WER improvements and
CharDiv distributions provides supporting evidence for the ef-
fectiveness of our method.
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Figure 1: The cluster-based personalized federated learning (CPFL) strategy groups samples with similar character diversity (CharDiv)
into clusters, where clients federally train these samples to create a model for decoding others within the same cluster.

2. Methodology
This study proposes the use of character diversity (CharDiv) as
a clustering metric, derived from ASR’s tokens, for clustering-
based FL [12, 13]. Section 2.1 presents the dataset, and section
2.2 outlines the proposed CharDiv-clustered FL strategy. Sec-
tion 2.2.1 illustrates the cluster-based personalized FL (CPFL)
framework along with the K-means model training for cluster-
ing, and explains the use of trained models at inference. Section
2.2.2 describes the computation of CharDiv. CharDiv-clustered
FL is depicted in Figure 1, with code available on GitHub 1.

2.1. Dataset

ADReSS challenge dataset [14], provided by DementiaBank
[16], serves as a benchmark for predicting dementia patients
using spontaneous speech, with a balanced distribution of age,
gender, and health conditions. Comprising transcribed speech
recordings from participants who describe the cookie theft pic-
ture from the Boston diagnostic aphasia examination [17] ,
the dataset encompasses speakers with different conditions for
speaker heterogeneity and transcribed speech for ASR tasks,
making it an excellent resource for exploring speaker hetero-
geneity issues in ASR. Utterances within each session were seg-
mented, and those lasting less than 0.1 seconds were removed.

2.2. CharDiv-clustered FL strategy

2.2.1. Federated learning with clusters

The training process begins with K-means model training for
data clustering, followed by individual client ASR models train-
ing using FL. The overall procedure is outlined in Algorithm 1.

During the K-means model (KM ) training phase, the
server first sends WG

0 to each client. WG
0 is obtained by fine-

tuning a pre-trained ASR model on the server’s data to enhance
its ability to capture both elderly and AD speech characteristics,
improving the quality of the clustering metric. The notation G
signifies “global”, and 0 denotes the initial model. Each client
c uses WG

0 to extract CharDiv for each sample from its dataset
Dc, and returns the resulting CharDiv embeddings Ec to the
server. The server utilizes Ec from all clients to generate KM .

Subsequently, ASR models undergo a four-step training
process for each client. Initially, all clients receive the same
model weights WG

0 from the server as the initial model weights

1https://github.com/Victoria-Wei/Cluster-base
d-Personalized-Federated-Learning-with-CharDiv.

Algorithm 1 Federated learning with clusters

1: W stands for model weights; G stands for global model; C
stands for the number of clients; D stands for training sets;
E stands for CharDiv embeddings; KM stands for K-means
model; K stands for the number of clusters, and R is the
number of FL rounds

2: procedure FEDERATEDLEARNINGWITHCLUSTERS
3: Initialize WG

0 (using the proxy data)
4: Train Kmeans:
5: for each client c in parallel do
6: Ec ← ExtractCharDiv(WG

0 , Dc)
7: end for
8: KM ← KM.fit((E1, E2, ..., EC))
9: Train model:

10: for each cluster k in parallel do
11: WG,k

0 ←WG
0

12: end for
13: for r=1,2,...,R do
14: for each client c in parallel do
15: for each cluster k in parallel do
16: Dc,k ← ClusterData(KM,Dc)

17: W c,k
r ← localTraining(WG,k

r−1, Dc,k)
18: end for
19: end for
20: WG,k

r ←
∑C

c=1
1
C
W c,k

r

21: end for
22: end procedure

for each of the K models, where K denotes the number of clus-
ters. Then, each client clusters its data Dc into K segments
using KM based on CharDiv derived from WG

0 , labeled as
Dc,k with k representing the corresponding cluster. This pro-
cess is shown as the “data distributor” in Figure 1. Each client
uses each of its data segments, to train a cluster-specific model,
yielding weights W c,k

r for round r, which are returned to the
server when local training is completed. At the end of each
round, the server aggregates model weights from all clients by
simple averaging over model weights trained with data of the
same cluster label, resulting in K distinct sets of aggregated
model weights WG,k

r , which act as the initial model weights
for the next round. The process can be terminated after a cer-
tain number of rounds, or when WG,k

r converge.
This process yields a coalition of K ASR models for each
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client, and all clients share the same ASR coalition for infer-
ence. During inference, an input utterance is first distributed
into its cluster by KM using CharDiv derived from WG

0 and is
then decoded by the corresponding ASR model.

2.2.2. Character diversity (CharDiv)

CharDiv is designed to capture the text token distribution, in-
cluding word usage and prosody differences, of each utterance
without revealing the actual text content. For n-th utterance
un, the ASR decoding process generates a raw character list,
denoted as un = {x1, x2, ...xT }, where xi ∈ {a, b, c, ..., <
unk >} is the output character for time-step i. The set includes
26 English letters, along with 6 characters indicating pause, un-
known, and others. T is the length of the utterance in time steps.
For each possible character xi, its frequency is calculated as
Nxi/T , where Nxi is the occurrence of character xi in the raw
character list. Frequencies of 32 possible characters are then
sorted to form CharDivn = {freqc1 , freqc2 , ...freqcD},
where ci is the character with the i-th largest frequency freqci ,
and D is the number of possible characters (D = 32). This vec-
tor signifies the diversity of characters spoken in the utterance,
referred to as “character diversity” or CharDiv in short.

3. Results and analysis
3.1. Experimental settings

3.1.1. Data splits

To facilitate FL, the original dataset underwent restructuring,
with data divided into distinct groups. A speaker-wise split
was performed to ensure no overlapping speakers among each
group, creating a setting with one server and five clients, each
holding a portion of data. The server’s data contains 50% of
ADReSS training data, while the remaining 50% is distributed
among the five clients. Within client data, an utterance-wise
split allocated 70% for training, 10% for validation, and 20%
for testing. Once the hyperparameters are decided, validation
data is merged into the training data for all experiments. In ad-
dition to the random setting, a diverse scenario with highly het-
erogeneous data is explored, where the distribution of healthy
controls (HC) and AD speakers differs among all clients. The
demographics of the server and clients are presented in Table 1.

3.1.2. Comparison methods

We compared our method with various models in diverse and
random client settings. The models, including 2 baseline meth-
ods, 3 non-FL methods, and 6 FL methods, are as follows:
• Baseline methods

Pre-trained ASR [18]: data2vec ASR model with the pre-
training setting of ‘data2vec-audio-large-960h’.
Fine-tuned ASR: fine-tuning the Pre-trained ASR model
on server’s data.

• Non-FL methods
Centralized training: fine-tuning the Fine-tuned ASR
model on all the client data at a central server.
Fine-tuned clients: fine-tuning the Fine-tuned ASR model
locally for each client.
Fine-tuned speakers: fine-tuning the Fine-tuned ASR
model locally for each speaker.

• FL methods
FL: FedAvg [19] with simple averaging in aggregation.

Weighted FL: FedAvg in [19].

Table 1: Demographics of data among server and clients. (HC:
healthy controls, AD: Alzheimer’s diseased)

Client
setting Server

Clients

Client 1 Client 2 Client 3 Client 4 Client 5

People

Diverse
AD: 27
HC: 27

AD: 10
HC: 0

AD: 9
HC: 3

AD: 5
HC: 5

AD: 3
HC: 9

AD: 0
HC: 10

Random AD: 3
HC: 3

AD: 6
HC: 8

AD: 7
HC: 5

AD: 6
HC: 4

AD: 5
HC: 7

Utterance
Diverse

906
216 260 154 175 157

Random 94 198 285 186 199

FedProx [10]: generalized FL regulating client weights by
additional constraint loss during local training.
FML [11]: personalized FL with mutual model for informa-
tion exchange and local model.
CBFL [13]: cluster-based FL modified to our case, using
ASR embeddings as clustering metric.
CPFL-emb.: with ASR embeddings as clustering metric.

3.1.3. Training parameters

Our ASR system, based on the data2vec end-to-end framework
[18], comprises 313,308,192 parameters and employs standard
connectionist temporal classification (CTC) loss in training.
Clients perform local training for 10 epochs, and the number
of FL rounds (R) is set to 10. The training process involves
K = 7 clusters and C = 5 clients for both diverse and random
settings. A grid search for hyperparameter K on the validation
set selects K = 7 based on the lowest WER among candidate
numbers. Experiments are conducted on DGX Station A100 us-
ing a single GPU, with CPFL training taking up to 38 h, varying
with different settings. During multiple tests with audio files of
various lengths, we observed an average inference time of 2 s,
with an average audio file duration of 3.7 s.

3.2. Superiority of CPFL and CharDiv

3.2.1. Superiority of FL methods over non-FL ones

In assessing FL’s advantages over traditional fine-tuning for bi-
ased and limited AD speech, we compare non-FL and FL meth-
ods. All three non-FL settings show performance drops com-
pared to Fine-tuned ASR in Table 2. Centralized training
has a WER of 46.6%. Fine-tuned clients experiences WER
increases to 48.58% and 50.11% for diverse and random client
settings, respectively. These declines may stem from hetero-
geneity within each client’s training data. Even Fine-tuned
speakers worsens the WER to 39.71% due to limited speaker
data and high intra-speaker heterogeneity. Surprisingly, the
least effective FL method outperforms non-FL methods, show-
casing FL’s significant potential, as highlighted in [6], for train-
ing models with limited yet biased data. A robust FL method is
important for handling highly biased and limited data.

3.2.2. Superiority of cluster-based FL over model-based FL

To show the potential of cluster-based FL, we reveal the limita-
tions of model-based FL methods by comparing them to vanilla
FL approaches. First, FedProx, a generalized model-based
FL method addressing client heterogeneity, performs similarly
to vanilla FL methods (FL and Weighted FL) with WERs
of about 34%. This implies that adjusting high-level model
weights may not suffice for handling the high heterogeneity
in our dataset and that a universally applicable model may not
fit all samples. Second, in FML, a personalized model-based
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Table 2: ASR performances in WER (%) of different models

Diverse Random

Baseline
Pre-trained ASR 56.08

Fine-tuned ASR 35.12

Non-FL
Centralized training 46.60

Fine-tuned speakers 39.71

Fine-tuned clients 48.58 50.11

Vanilla FL
FL 33.59 34.89

Weighted FL 34.58 34.12

Generalized FL FedProx 34.05 34.35

Personalized FL
FML (local) 38.33 37.41

FML (mutual) 33.44 32.75

Cluster-based FL
CBFL 34.51 34.66

CPFL – emb 33.21 32.59

CPFL – CharDiv 29.99 30.22

FL approach, local models (FML (local)) consistently under-
perform vanilla FL models, with WER increases of over 2.5%
across different client settings, which indicates the challenges in
achieving optimal performance with personalized model-based
FL when facing high within-client heterogeneity. Cluster-based
methods, which reduce within-cluster heterogeneity by group-
ing similar samples or clients, offer a promising solution for
tackling the complexities of highly heterogeneous datasets.

3.2.3. Superiority of CharDiv-clustered CPFL

In order to demonstrate the suitability of our CPFL and CharDiv
design in FL AD-oriented ASR tasks, we compare it with CBFL
and explore the impact of different clustering metrics. Despite
the promise of cluster-based FL, CBFL’s approach of training
models on all samples for different models may harm model
performance. Instead, we use corresponding data for separate
models. With the same clustering metric, CPFL-emb shows
WER improvements of 1.3% and 2.07% for diverse and random
client settings, highlighting its superiority over CBFL. The de-
signed clustering metric, CharDiv, is more effective in capturing
characteristics in speech data, especially for text token informa-
tion, forming more robust clusters. CPFL-CharDiv achieves
the lowest WER of 29.99% and 30.22% for diverse and random
client settings, respectively. The WER improvements are 3.6%
and 4.67% compared to FL, and 3.22% and 2.37% compared
to CPFL-emb. The results show that the design for CPFL and
CharDiv contributes to enhanced model performance.

3.3. Cluster analysis

To evaluate our method’s impact on resolving heterogeneity, we
analyze each cluster’s characteristics. Table 3 compares WER
per cluster between CPFL-CharDiv models and the vanilla FL
model, revealing notable WER improvements by our method,
especially in clusters 2 and 6. Further analysis of the CharDiv
distribution reveals distinct patterns in these clusters compared
to others. Table 4 highlights the first dimension from CharDiv’s
32 dimensions to illustrate the primary differences. No-
tably, clusters 2 and 6 both exhibit elevated values in this di-
mension, corresponding to “<pad>,” a special token denot-
ing pauses predicted by the data2vec model, across all clus-
ters. We further investigate pause distributions, categoriz-

Table 3: Comparisons of WER (%) in FL and CPFL-CharDiv

FL CPFL-CharDiv WER reduction
Cluster 1 17.02 18.09 -1.07
Cluster 2 54.17 45.00 9.17
Cluster 3 33.06 28.93 4.13
Cluster 4 28.84 28.09 0.75
Cluster 5 16.42 14.93 1.49
Cluster 6 44.54 38.86 5.68
Cluster 7 34.84 30.32 4.52

Table 4: Cluster distributions of sentences different in pause
length and CharDiv’s first dimension

Sample distribution (%) Average value of
1st-dim CharDiv (%)Long Medium Short

Cluster 1 0 0 100 51.13 ± 3.00

Cluster 2 100 0 0 95.08 ± 2.51

Cluster 3 0 59.46 40.54 60.76 ± 2.55

Cluster 4 0 100 0 69.11 ± 2.38

Cluster 5 0 0 100 37.69 ± 4.93

Cluster 6 100 0 0 86.36 ± 2.53

Cluster 7 15.49 84.51 0 77.32 ± 2.45

ing samples into “long-pause” (over 80% predicted time steps
as “<pad>”), “short-pause” (less than 60%), and “medium-
pause” (in between). Table 4 depicts the distribution of these
pause types in each cluster, revealing that clusters 2 and 6 ex-
clusively consist of “long-pause” samples. Conversely, cluster
1 and 5 solely comprise “short-pause” samples and only clus-
ter 7 has less than 20% of its data as “long-pause,” showing
variations in pause usage among clusters. The following sam-
ples demonstrate raw output tokens, with “(∗N)” indicating
N repetitions of the previous token. A sample from cluster
5, “<pad>(*7)IID<pad>ON”TKNOW<pad>(*2),” exhibits
a small number of “<pad>”, while another sample from clus-
ter 2, “<pad>(*32) O<pad>(*5) K<pad>(*2) A<pad>(*5)
Y<pad>(*9),” exhibits a large number. Both samples are from
the same speaker, highlighting varying pause usage due to dif-
ferent speaking conditions, emphasizing the importance of us-
ing sample as clustering unit for improved clusters. The find-
ings underscore the noticeable impact of a speaker’s pause us-
age on ASR model learning and the effectiveness of our method
in addressing scenarios where speakers use longer pauses while
uttering fewer words. Heterogeneity in pause usages seems to
be a key heterogeneity that is evident in this cohort.

4. Conclusions
This study introduces a cluster-based FL method for AD-
oriented ASR, featuring the designed clustering metric CharDiv
and an ASR system based on clusters to mitigate text token het-
erogeneity. We show FL’s superiority on limited yet biased data,
enhance cluster-based FL through the CPFL strategy, and use
CharDiv to capture ASR output token distributions. Analyzing
per-cluster WER improvements and CharDiv distributions re-
veals reduced pause usage heterogeneity, benefiting ASR train-
ing. While our focus here is on a subset of text token hetero-
geneity, further exploration is needed for other AD-related vari-
ations, such as part-of-speech usage or vocalization differences.
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[3] M. Zvěřová, “Clinical aspects of alzheimer’s disease,” Clinical
biochemistry, vol. 72, pp. 3–6, 2019.
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