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Abstract
Speech emotion recognition (SER) helps to achieve bet-

ter human-to-machine interactions in voice technologies. Re-
cent studies have pointed out critical fairness issues in the SER.
While there are efforts in building fair SER, most of the works
focus on fairness between demographic groups and rely on
these broad categorical attributes to build a fair SER. In this pa-
per, we instead focus on the fairness learning among individual
speakers, which is rarely discussed yet much more intuitively
appealing in constructing a fair SER model. To reduce the re-
liance on knowing speaker IDs, we perform unsupervised clus-
tering on the utterance embeddings from a pre-trained speaker
verification model that puts utterances with different character-
istics into clusters that roughly represent the true speaker index.
Our evaluation demonstrates that with these cluster IDs, we can
construct a fairness-aware SER model at an individual speaker-
level without knowing speaker IDs upfront.
Index Terms: Some keywords Index Terms: speech emotion
recognition, fairness, privacy

1. Introduction
Speech emotion recognition (SER) helps enable machines with
emotional intelligence in voice technology [1]. One key factor
is to add the human aspect of SER into the system, which makes
machine-human interaction more relatable. Along with the de-
velopment of SER and the involvement and integration of this
system in our daily life and many decision-making processes,
it is now becoming critical for advancing AI-based applications
to ensure fairness [2]. A SER model is often constructed by
learning on datasets composed with sliced or recorded audio
and ground truth labels about emotion provided by human raters
[3]. Learning on these speech samples generated by humans
may overlook diversities, equality, and inclusion elements, af-
fecting not just performances but also fairness [4]; for example,
emotion attributes annotated by humans also cause bias like af-
fect priming [5]. In consequence, fairness constraint is impor-
tant when developing the SER model in the current era.

Numerous efforts have endeavored to address fairness con-
cerns within SER. For instance, Gorrostieta et al. tackled gender
bias in SER by implementing an adversarial invariant strategy
and model penalization [6]. Wagner et al. [7] demonstrated
the potential of transformer-based SSL in achieving comparable
performance across gender groups. These works mainly mit-
igate bias stemming from differences in emotional expression
between broad demographic groups categorized by attributes
(e.g., gender). However, individual speakers exhibit distinct
emotional expressions influenced by personal attributes shaped
over time through self-awareness and socialization processes
[8]. Addressing bias at the group level may neglect fairness
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Figure 1: Emotion expression not only differs between demo-
graphic groups but also differs at the individual level with dif-
ferent personal attributes

at the individual level [7]. Thus, in the pursuit of a fair SER
model, it’s crucial to consider inter-speaker fairness specifically.

While it’s acknowledged that individuals express emotions
differently, current research predominantly concentrates on en-
hancing overall performance by incorporating personal identi-
fiers (e.g., speaker ID and representations) into SER models.
For instance, Li et al. employed adversarial training to render
model representation speaker-invariant [9]. Li et al. devised
a graph integrating the speaker similarity between embeddings
to capture inter-speaker relation [10]. However, pursuing per-
formance improvement alone, devoid of explicit bias control,
doesn’t guarantee inter-speaker fairness.

Previous works to mitigate bias in SER predominantly
aimed at achieving group fairness, whereas personalized SER
that accounts for individual differences neglected the necessity
for fairness. We argue that SER should encompass both as-
pects to ensure inter-speaker fairness. Moreover, discussions
surrounding fairness in emotion regression are infrequent. To
the best of our knowledge, our proposal marks the inaugural
attempt to introduce direct inter-speaker fairness constraints in
speech emotion regression.

In this paper, we introduce an SER model that prioritizes
inter-speaker fairness. Moreover, in the realization of real-
world application, we delve into automatic speaker clustering
for datasets lacking explicit speaker identification. Initially, we
leverage utterance-level embeddings to encode the distinctive
features of each sample. Subsequently, we employ a cluster-
ing algorithm to organize these features into speaker clusters
that roughly represent speaker ID. We then evaluate various fair
SER models, each penalized for fairness concerning individual
speakers, clusters, and gender, respectively. Additionally, we
conduct comparative analyses between learning from an in-the-
wild dataset, encompassing a diverse array of speakers, and a
lab dataset containing both scripted and spontaneous record-
ings. Our results demonstrate that the proposed method en-
hances inter-speaker fairness while maintaining moderate per-
formance levels. Importantly, it can be effectively generalized
to in-the-wild datasets without prior knowledge of speaker IDs.
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Figure 2: Overview of the speech characteristic fairness aware
speech emotion recognition (SER) architecture.

2. Research Methodology
2.1. Dataset

2.1.1. MSP-Podcast

MSP-Podcast corpus version 1.10 [11] contains real podcast
recordings (16kHz, 1ch) segmented in utterances. There are
104,267 utterances for a total of 106 hours in the dataset, in-
cluding 1433 speakers. Each utterance is annotated with va-
lence, arousal, and dominance as the emotion attributes by at
least 5 annotators. A seven-point Likert scale is used to eval-
uate valence (very negative versus very positive), arousal (very
calm versus very active), and dominance (very weak versus very
strong). We follow the split provided by the authors for train-
ing, validation, and testing datasets, and the speakers in each set
are independent of the others. In this research, we choose 515
labeled speakers with at least 32 utterances to avoid evaluating
fairness among speakers with an insufficient amount of data to
represent one speaker. The number of speakers and utterances
used in this work is summarized in 1.

2.1.2. IEMOCAP

The IEMOCAP dataset [12] is a benchmark SER corpus with
a gender balance (one male and one female) in each of its
five dyadic spoken interaction sessions and results in 10 speak-
ers with approximately equal number of utterances. There are
10039 utterances for a total of 12 hours in the dataset, and the
emotion of the utterances is rated by six unique raters (two
males and four females). The self-assessment manikins (SAMs)
are used to evaluate the corpus in terms of the attributes va-
lence [1-negative, 5-possitive], arousal [1-calm, 5-excited], and
dominance [1-weak, 5-strong]. We split the utterances of each
speaker with the ratio of 7:1:2 to form training, validation, and
testing datasets. The number of speakers and utterances is sum-
marized in 1.

2.2. Computational Framework

2.2.1. Speech Emotion Regression Model

To recognize the emotion attributes, we use an emotion recogni-
tion model with a structure similar to Wu et al. [13]. It includes
HuBERT [14] and a GRU-transformer. The 768 dimensions
acoustic features from HuBERT are first reduced to 16 dimen-
sions by a linear fully connected layer, followed by stacking one
GRU layer and one transformer encoder layer with two heads.
Average pooling over time is applied before it passes to three in-

Table 1: A summary of speakers and utterance distribution in
two datasets

MSP-Podast IEMOCAP
Train Valid Test Train Valid Test

speaker 364 44 107 10 10 10
utterance 38513 10988 23809 7022 1004 2013

dependent two-stacked fully connected layers each ending with
one unit corresponding to the prediction of arousal, valence, and
dominance for learning emotion embedding that represents each
emotion domain separately. Except for the last layer, all hidden
dimensions of layers are consistent.

2.2.2. Fairness-Aware Learning

To mitigate the bias, we train the model by minimizing the fol-
lowing loss function with fairness constraint for each emotion
attribute (i.e., arousal, valence, and dominance):

LTotal = LCCC + λLD, (1)

where LCCC has been used in various works for regression task
of SER [6, 7], which is the negative concordance correlation
coefficient (CCC) as follows:

LCCC = − 2ρσyσŷ

σ2
y + σ2

ŷ(µy − µŷ)2
, (2)

where ρ is the Pearson correlation coefficient and σx and µx are
the variance and the mean over a batch of training samples. LD

is the fairness criterion that is used to evaluate fairness and pe-
nalizes the model concerning bias between sampled groups with
an equal number of samples over batch, with λ controlling the
level of trade-off between performance and fairness. We discuss
the fairness criterion in our interest in the following section.

2.2.3. Fairness Definition

In the regression problem of SER, there is currently no clear
definition for measuring fairness. Gorrostieta et al. transferred
the continuous arousal label into the binary label (calm and ac-
tive) and focused on “Equality of odds”, which requires the
model prediction to have the same true positive rate, condi-
tioned on the ground truth, for all elements of the protected at-
tributes [6]. On the other hand, Wanger et al. evaluated the
performance difference between male and female groups [7].
While most of these works focus on achieving fairness consid-
ering the ground truth label, model prediction should be fair
among groups regardless of the ground truth label beforehand.

In consequence, we use the discrimination of the model de-
fined by Zemel et al. [15], which measures the average dif-
ference between the average prediction for each attribute value
as the fairness criterion. Since the original definition is limited
to only binary attributes, we follow the extended version for
k-way categorical attributes by Raft et al. [16], which is done
by re-formulating discrimination to consider the sub-population
differences from the global mean as follows:

Discrimination =
2

k

k∑
i=1

|
∑

xj∈S ŷj

|S| −
∑

xj∈Si
ŷj

|Si|
| (3)

where xi and ŷi are the input feature and the prediction of the
model, and Si ∈ S are k attribute values.
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Table 2: A summary of experimental performance and fairness concerning different groups over emotion attributes V (valence), A
(arousal), and D (dominance) in each testing set.

MSP-Podcast Performance (CCC) Discrimination (speaker) Discrimination (cluster) Discrimination (gender)
Emotion V A D V A D V A D V A D
human rated 0.1722 0.2497 0.1898 0.1511 0.2258 0.1729 0.0129 0.0255 0.0056
baseline 0.2594 0.5112 0.3857 0.2851 0.3444 0.3310 0.2643 0.3207 0.3098 0.0089 0.0607 0.0231
Fairgender 0.2548 0.5093 0.3844 0.2831 0.3424 0.3312 0.2604 0.3190 0.3100 0.0215 0.0571 0.0265
Fairspeaker 0.2664 0.5019 0.3891 0.1793 0.2532 0.2263 0.1595 0.2335 0.2085 0.0284 0.0578 0.0267
Faircluster 0.2598 0.5012 0.3865 0.1896 0.2612 0.2358 0.1682 0.2417 0.2171 0.0273 0.0594 0.0288
IEMOCAP Performance (CCC) Discrimination (speaker) Discrimination (cluster) Discrimination (gender)
Emotion V A D V A D V A D V A D
human rated 0.0640 0.0303 0.0999 0.0651 0.0965 0.1058 0.0248 0.0002 0.0026
baseline 0.5505 0.6980 0.5572 0.0925 0.0483 0.0776 0.1038 0.1252 0.1248 0.0203 0.0017 0.0050
Fairgender 0.5492 0.6962 0.5558 0.1240 0.0727 0.1169 0.1485 0.1845 0.1837 0.0232 0.0042 0.0075
Fairspeaker 0.5266 0.6907 0.5405 0.0680 0.0430 0.0659 0.1196 0.1686 0.1604 0.0217 0.0019 0.0077
Faircluster 0.5265 0.6864 0.5379 0.0765 0.0613 0.0841 0.0892 0.1454 0.1371 0.0237 0.0021 0.0038

In this study, our primary aim is to address inter-speaker
fairness, particularly concerning individuals exhibiting diverse
emotional expressions, as discerned through speaker ID dis-
crimination. However, in-the-wild datasets often lack compre-
hensive speaker information, including speaker IDs for all sam-
ples, and may contain insufficient data for certain speakers to
adequately capture the breadth of emotional variability. To en-
hance the relevance of our approach in real-world settings, our
objective is to derive speaker groups directly from speech sig-
nals, leveraging individual differences to approximate speaker
ID representation while combining speakers with similar char-
acteristics into larger groups.

2.2.4. Automatic Speaker Clustering

To delineate distinct speech characteristics, we aim to devise
an unsupervised clustering procedure leveraging representative
features extracted from each utterance. Initially, we harness
the power of state-of-the-art ECAPA-TDNN speaker verifica-
tion model [17], accessible via SpeechBrain [18], to derive
utterance-level embeddings comprising 192 dimensions. The
model is pre-trained on vast datasets encompassing over one
million utterances from Voxceleb 1 [19] (featuring 1,211 speak-
ers) and Voxceleb 2 [20] (encompassing 5,994 speakers), pre-
dominantly comprising English speakers from the US. Notably,
this model attains a commendable 0.8% equal error rate on the
Voxceleb 1 testing dataset, affirming its efficacy in capturing
speaker characteristics.

Moreover, we employ a Principal Component Analysis
(PCA) model for dimensionality reduction, retaining 80% of
the original data’s variance to mitigate computational costs and
potential noise. Subsequently, the data undergo clustering uti-
lizing the Hierarchical Density-Based Spatial Clustering of Ap-
plications with Noise (HDBSCAN) algorithm [21] without a
predetermined number of clusters to form groups of utterances
with similar characteristics. HDBSCAN is an unsupervised al-
gorithm known for its ability to identify clusters of varying den-
sities and handle noise robustly, particularly valuable in sce-
narios with imbalanced data distributions across speakers in in-
the-wild datasets, potentially resulting in sparser distributions in
the embedding space. This method effectively classifies certain
points as noise data, which do not align with any clusters.

To leverage these noise data, we assign them labels based
on the cluster exhibiting the highest cosine similarity between
its centroid and the noise data. This clustering procedure is in-
dependently conducted on the training, validation, and testing

datasets. Subsequently, armed with these characteristic clus-
ters, we proceed to develop a SER model that conscientiously
considers fairness concerning these pseudo-speaker ID clusters
and improves inter-speaker fairness as well.

3. Experimental Setup and Results
3.1. Experimental Setup

The experiment is run on the speech emotion regression over
three emotion attributes (i.e., arousal, valence, and dominance)
on MSP-Podcast and IEMOCAP. For both datasets, the emotion
attributes of each utterance are derived by the average values
among annotators and are scaled to [−1, 1] to ensure the result
is comparable between datasets. We experiment with four dif-
ferent SER models as follows:
• Baseline: SER model without any fairness constraint.
• Fairgender: Fariness-Aware SER model respect to gender.
• Fairspeaker: Fariness-Aware SER model respect to speaker in-

dex.
• Faircluster: Fariness-Aware SER model respect to clusters.
We employ the CCC, with an ideal value of 1, to assess model
performance. Fairness is evaluated using discrimination, where
a lower value is desirable, ideally approaching 0. To gauge
discrimination within the datasets, we incorporate the analy-
sis of discrimination between ground truth labels annotated by
humans. For each fair SER method, we utilize early stopping
with patience of 20 epochs to identify the model exhibiting the
lowest average discrimination of emotion attributes concerning
their target groups on the validation dataset, ensuring that it
maintains at least 90% of the best performance over epochs.
Additionally, we determine the trade-off coefficient (λ) through
linear searching within the range [0.05, 0.5] with a step size of
0.05, adhering to the same criteria.

All experiments are conducted using PyTorch 1.12.1 [22],
with model parameters initialized using the default settings.
Throughout the experiments, the decaying factor is set to 0.001,
the dropout rate to 0.3, and the batch size remains fixed at 128.
We employ the Adam optimizer with a learning rate of 1e-5 for
parameter optimization, spanning 200 epochs. Training each
method on an Nvidia GeForce RTX 1080Ti GPU typically re-
quires 3 to 4 hours. Our implementation is publicly available
on GitHub1. Detailed performance metrics and fairness evalua-
tions of the test dataset are provided in Table 2.

1https://github.com/HenryChou36/FairEmo
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Figure 3: First row is probability density distribution of valence,
while the second row is the corresponding model representation

3.2. Analysis of Recognition Results

The best λ are λ = 0.05 for Fairgender, λ = 0.5 for Fairspeaker and
λ = 0.45 for Faircluster respectively on MSP-Podcast dataset,
and the best λ are λ = 0.5 for all fair SER model on IEMOCAP
dataset. The Fairspeaker model achieves the lowest discrimination
on both datasets while retaining more than 95% overall perfor-
mance compared to the baseline model. On the other hand, on
MSP-Podcast, the Faircluster model achieves comparable perfor-
mance and discrimination to Fairspeaker. However, the model on
IEMOCAP performs worse in discrimination than the baseline
model for emotion attributes other than valence.

Comparing results across datasets, the model on IEMO-
CAP shows generally less discrimination than on MSP-Podcast,
even with human-annotated attributes. This discrepancy likely
arises from the imbalance and limited emotional variety for
each demographic group and individual speakers in the in-the-
wild dataset compared to the balanced scripted and improvised
recordings in the static dataset. Consequently, learning from
biased data increases discrimination.

Regarding gender discrimination, we observe that gender
discrimination is significantly lower than discrimination against
other groups across both datasets. The baseline model already
achieves relatively fair results, with the Fairgender model only
enhancing fairness for specific attributes. However, achieving
gender fairness does not necessarily ensure fairness concerning
individual speakers.

Regarding cluster discrimination, in the MSP-Podcast
dataset, improving fairness for either individual speakers or
clusters generally benefits both. However, this correlation does
not extend to the results from the IEMOCAP dataset. Fairclusterer

only improves the fairness of valence concerning clusters com-
pared to the baseline. This suggests that efforts to enhance fair-
ness concerning cluster groups may primarily improve fairness
among speakers in models trained with in-the-wild datasets.

3.3. Ablation Study of De-bias Technique

To examine the effect of mitigating discrimination in our model,
we analyze the probability density distribution of valence pre-
dictions and the corresponding 16-dimensional hidden layer
representations before the fully connected layers. This involves
two randomly selected speakers from the MSP-Podcast dataset,
visualized using t-distributed Stochastic Neighbor Embedding
(t-SNE) for nonlinear dimension reduction in Figure 3.

As Figure 3 shows, utterances of speaker 1 are concentrated
in space that is separated from the speaker 2 for baseline and the

Figure 4: Distribution of the data ratio of a speaker labeled with
their majority vote cluster in training datasets.

Fairgender model. On the other hand, for the model with lower
discrimination between speakers like Fairspeaker and Faircluster,
the utterances of speaker 1 are scattered and overlapped more
with the other, and the probability density function is closer
to each other. This shows that by lowering the discrimination
among speakers, we also make it harder to identify specific
speakers from model representation.

3.4. Analysis of Clusters

To figure out the differences in fairness results of Fairclusterer

model between two datasets, we inspect the data ratio of each
speaker labeled with the majority vote cluster that has the
largest data ratio of a speaker among all the clusters they are
labeled within the training datasets and summarize in Figure 4.
For the MSP-Podcast dataset, above 80% of speakers have ut-
terances being labeled with a single cluster for each of them.
This shows that the clustering procedure roughly identifies each
speaker as a whole based on the characteristics encoded by the
utterance embedding. Thus, the Fairgender model that mitigates
the bias concerning clusters can also reduce bias concerning in-
dividual speakers.

On the other hand, for the IEMOCAP dataset, only around
50% of the utterances of a speaker are in the same cluster, in-
dicating that utterances of a speaker can be distributed in more
than two clusters. Therefore with the clusters not corresponding
to characteristics of speakers on the IEMOCAP dataset, con-
straining the Faircluster model by fairness concerning it may not
help in improving inter-speaker fairness.

This difference between datasets can also be found in other
research [23] that tried to identify protected groups from cor-
related features. In our case, since information like emotion
states can also be disentangled from the embedding space [24],
the method can be less effective for static datasets with a smaller
variety of speakers than those in-the-wild datasets.

4. Conclusion
In this work, we proposed a method to tackle inter-speaker fair-
ness issues residing in the SER model and further generalized
without speaker ID upfront through automatic speaker cluster-
ing. Our results and analyses show three insights: 1) The inter-
speaker fairness issue depends on the target dataset. 2) Relation
between inter-speaker fairness and model representation. 3) ef-
fectiveness of the de-bias technique and the clustering method.
Our current work is limited to one fairness criterion in the SER
model, and we plan to extend to other criteria and de-biased
methods to provide more insight into inter-speaker fairness. We
also want to explore the speaker clustering method to make the
procedure not limited to in-the-wild datasets.
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