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Abstract
Noise-robust speech emotion recognition (SER) systems are
important in real world applications. Conventionally, noise ro-
bustness is achieved by training on a noise-augmented dataset.
In this work, instead of pre-defining noise SNRs to augment
the clean set, we propose an augment-while-train strategy while
referencing speech distortion metric. This strategy (MetricAug)
constructs an augmented set per each training epoch by assess-
ing the effect of different distortion levels have on degrading
the SER performances. That is, we augment more of those
noisy data that degrade the SER performance the most dynam-
ically at each learning epoch. We evaluate our framework on
two databases, MSP-Podcast and MELD. Our framework shows
consistent robustness against varying levels and even unseen
noise types. Further analysis reveals that by choosing STOI as
the metric of noise distortion, it leads the construction of aug-
mented sets better than metrics of PESQ and fwSNRseg.
Index Terms: speech emotion recognition, speech distortion
metrics, noise robustness

1. Introduction
In recent years, speech emotion recognition (SER) technology
is being deployed on real-world systems. A key component in
making a real-world SER successful is its ability to maintain
high performances when being exposed to varying noisy condi-
tions. Achieving a noise-robust SER can be cast as a problem of
building a denoising system as a pre-processor [1, 2], or more
elegantly, learning a noise-robust SER model [3, 4, 5]. Data
augmentation is an effective mechanism to achieve model ro-
bustness. By creating noisy copies of speech to augment the
originally clean training set, a noise-robust model can be de-
rived by training on this noise-augmented set. In fact, this strat-
egy has demonstrated its superiority not just for SER but also
for automatic speech recognition [6, 7].

Several works have used the augmentation strategy to
achieve noise-robust SER. For example, Wilf et al. created noisy
condition as another domain, and through the use of domain
adaptation, one can derive a noise-robust SER [3]; Leem et al.
explored noise robustness of low-level descriptors and applied
these descriptors for training [4]; Pappagari et al. expanded the
original dataset by mixing noise and emotion data and further
evaluated in noisy scenarios [5]. Most of these augmentation
methods follow an augment-then-train strategy, i.e., by pre-
defining fixed levels (SNRs) of noisy samples to be generated,
one would then train a model on this static augmented set.

Instead of augment-then-train, a better approach would be
augment-while-train, i.e., on-the-fly constructing an augmented
set during the training process. In fact, past studies have ex-
plored strategy of augment-while-train for learning feature ro-

Figure 1: A noise-robust learning for SER.

bustness in automatic speech recognition. Park et al. demon-
strated improved robustness of spectrogram after random time
masking, frequency masking, and time warping during the
training [8]. Hu et al. proposed a sample-adaptive policy for
augmentation, which augment samples based on the training
loss to derive an adaptive augmented hyper-parameter [9].

Our concept of achieving SER robustness is shown in Fig.
1. The orange line is the ideal robust line, i.e., as the distortion
level increases, the performance stays the same. The augmen-
tation process is to force the “robust curve” to approximate the
ideal robust line by adding adequate amount of noisy speech
during training. Specifically, our idea is at every learning epoch,
we first assess our current model’s degradation in performance
as a function on the severity of the speech distortion levels, then
we dynamically adjust the amount of augmented noisy data ac-
cordingly (adding more of those levels of noisy samples that our
current model performs the worst at). While a higher distor-
tion level results in a larger degradation of SER performance,
the relationship between the types of distortion metrics used
and SER performance is not well explored. We use three dif-
ferent speech distortion metrics to lead this epoch-wise aug-
mentation strategy: short-time objective intelligibility (STOI)
[10], perceptual evaluation of speech quality (PESQ) [11] and
frequency-weighted segmental SNR (fwSNRseg) [12]. In this
work, we propose a dynamic augmentation process, MetricAug,
embedded in the model learning process.

We term this as a distortion metric-lead augmentation strat-
egy. We first make use of the MUSAN noise dataset to create a
sufficiently diverse noisy Superset. Then, we derive a sampling-
weight for each distortion level as measured by the chosen met-
ric at every epoch according to the resulting degradation of per-
formances. This sampling weight dictates the amount and the
kind of noisy data from the Superset to be added to the epoch-
wise augmented set. We evaluate our method on MSP-Podcast
and MELD datasets and demonstrate improved SER robustness
against varying levels of noisy conditions and even in a setting
of unseen noise type. Finally, we reveal that the distortion met-
ric of STOI leads the augmentation process better than the other
two metrics examined. To the best of our knowledge, we are the
first study using the discriminative adaptive augmentation strat-
egy for noise-robust SER.



Figure 2: Illustration of MetricAug: An epoch-wise distortion metric-lead noise augmentation.

Table 1: A summary of 4-classes emotion distribution in two
databases.

MSP MELD
Train Dev Test Train Dev Test

Angry 1839 621 758 1109 153 345
Happy/Joy 8564 1320 4401 1743 163 402

Neutral 16518 2529 6962 4710 470 1256
Sad 1681 302 666 683 111 208

Total 28602 4772 12787 8245 897 2211

2. Research Methodology
2.1. Dataset

2.1.1. Speech emotion dataset: MSP-Podcast

We used MSP-Podcast corpus version 1.8 as one of the
speech emotion dataset, which contains real podcast recordings
(16kHz, 1Ch) segmented in utterances [13]. There are 73,042
utterances for a total of 113 hours in the dataset, including 1,285
speakers. Each utterance is annotated with nine primary cate-
gorical emotions by a minimum of five annotators. In this work,
we target four classes data for our speech emotion classification:
neutral, angry, sad and happy. We follow the split which authors
provided, the emotion distributions are shown in Table 1.
2.1.2. Speech emotion dataset: MELD

Multimodal EmotionLines Dataset (MELD) is a multimodal
database collected from the TV series “Friends” [14], which
contains 13,000 utterances and 407 speakers in total. Each ut-
terance is annotated with seven categorical emotions. We use
ffmpeg [15] to extract the speech data from video and further
down-sample them into (16kHz, 1Ch) by using Librosa [16].
We gathered from four emotion classes (anger, sadness, joy and
neutral) and followed the original split setting which authors
provided, the emotion distributions are shown in Table 1.
2.1.3. Noise dataset: MUSAN corpus

A Music, Speech, and Noise (MUSAN) corpus contains about
60 hours of speech, 6 hours of noise and 42 hours of music [17].
This is a common dataset used for studies of noise augmented
robust SER learning [18, 5]. In this work, we use the noise and
music part to mix with the speech emotion data. There are 929
noise audios and 660 music audios in total.
2.1.4. Noise dataset: ESC-50
Dataset for environmental sound classification (ESC-50) con-
tains 2,000 noise audios in five different categories [19]. This
is also used by other SER data augmentation framework [3]. In
this work, we mix ESC-50 with the testing data of both speech

emotion dataset, and we treat these data as unseen noisy data to
evaluate our framework.

2.2. Speech Emotion Classification Model
In this work, we use a similar emotion classification model as
in the most recent state of the art [20]. It includes 512 dimen-
sions vq-wav2vec [21] and a GRU-transformer. In our network,
the vq-wav2vec is first reduced to H dimensions by a linear
fully connected layer, then the hidden embedding is passed to
the stack of one GRU layer and one transformer encoder layer
with two heads. Average pooling over time is applied before it
passes to the final fully connected layer with a softmax function
for four emotion classification. Except the last layer, all hidden
dimensions of layers are consistent. We decide H by apply-
ing the greedy search with a double policy from 8 to 128. The
Nparameter ranges are from 5k to 265k.

2.3. Distortion Metric-Lead Augmentation Strategy
Our proposed method MetricAug is shown in Fig. 2. The strat-
egy centers on generating epoch-wise augmented data, which
are sampled from a large Superset. In this following, we will
describe the construction of our Superset and detail our aug-
mentation strategy.

2.3.1. Superset: A Diverse and Large Noisy Set

Superset is constructed by mixing the MUSAN audio sam-
ples and the original training set and validation set, denoted as
XSuptr and XSupva , respectively. To ensure that the Superset
includes adequate diversity, the emotional speech samples are
mixed with varying levels of noise and music from the MUSAN.
We target the Superset to have samples with SNR ranges from
0dB to 30dB at an interval step of 2dB. This results in a 30N
total number of samples after mixing, where N denotes the total
number of samples in the original speech emotion dataset.
2.3.2. Distortion Metrics
There are three distortion metrics used in this work to lead the
generation of the epoch-wise augmented set.

• PESQ: It is used for measuring speech quality after distortion
that is designed for modeling the subjective tests for the mean
opinion score (MOS) in the range of -0.5 and 4.5.

• STOI: It is a correlation coefficient based method, which
measures the intelligibility between distorted speech and
clean speech. It correlates to the words correct rate in human
listening tests.

• fwSNRseg: It measures the SNR in several frequency bands
in short window frames, which can be seen as an advanced
version of the original time domain SNR.



We first obtain a distortion metric distribution on the entire Su-
perset. We then further quantize it into K levels using either
Uniform splitting (every discrete distortion level has the same
amount of data samples) or GMM clustering (a distributional
method for quantization). To preserve at least N data points for
each level during clustering of speech distortion metrics, we set
K = 5 on all of our approaches.

2.3.3. MetricAug: Augmentation Strategy

The core idea of our augmentation strategy is that given N sam-
ples to be retrieved from the Superset for every epoch i, we gen-
erate a dynamic weight vector for ith epoch W c

i ∈ R1×K to
decide the amount of augmented samples retrieved in the kth

distortion level as measured by a distortion metric from the
Superset. This augmented set is denoted as X

ak
i ⊂ XSuptr ,

where a = {PESQ, STOI, fwSNRseg}.
|{Xak

i }| = N × w
ck
i (1)

Xa
i = {Xa1

i , Xa2
i , ..., XaK

i } (2)

where |{Xak
i }| is the cardinality of set {Xak

i }, k ∈ [1,K],
w

ck
i ∈ W c

i denote the ith epoch sampling weights of the kth

distortion level. The final training set Xtr
i of ith epoch is de-

noted as follow:
Xtr

i = {Xa
i , X

cleantr} (3)

where Xcleantr is the original clean training set. The process
of deriving W c

i for each epoch is detailed in the next section.

2.3.4. Sampling Weight on Distortion Levels

w
ck
i is a weight constant that decides the amount of samples

out of N to retrieved from Superset’s kth distortion level at ith

epoch. We first define two constraints for wck
i :

ΣK
k=1w

ck
i = 1

min(W c
i ) ≥ L

(4)

where L means the lower bound of sampling weight. By set-
ting L = 0.05, this guarantees a minimum of 5% of N will be
sampled from the kth level. To reinforce the training efficiency,
the total size of the sample augmented is N . To derive W c,
we first define gk as the “emotion evaluation gap” of the kth

level for a specific distortion metric. This gap is computed by
the model performance difference between the clean validation
set and each of kth levels of noisy validation set XSupva under
specific distortion metric distribution in the (i− 1)th epoch:

gk = Eval(Y cleanva , Ŷ cleanva)−

Eval(Y Supva
k , Ŷ Supva

k )
(5)

where Eval(.) gives model performance measured in
weighted-f1. This gap is computed in the validation stage after
each epoch, i.e., gk is also epoch dependent. The process of ob-
taining W c

i is shown in the Algorithm 1, it uses the normalized
gk to adjust the sampling weight wck

i for the next epoch. If the
gk is greater, the sampling weight of that specific level is larger.
To achieve both constraints listed in equation (4), we first assign
weights as L for those normalized gk are less than L, and ex-
clude them in the normalization term by subtracting them from
1. In the final step, we distribute the rest to those normalized
gk > L (line 6 of Algorithm 1). We set all wck

i = 1/K = 0.2
in the first epoch since there is no gk initially. We provide all of
our source code on a github repository1.

1https://github.com/crowpeter/MetricAug

Algorithm 1 Deriving MetricAug Sampling Weight

Input: (i− 1)th epoch emotion evaluation gaps G, gk ∈ G
Output: ith epoch sampling weights on distortion levels W c

i ,
w

ck
i ∈W c

i

1: Set L = 0.05
2: Initial wck

i = gk
|ΣK

k=1
gk|

, for k ∈ [1,K]

3: while ΣK
k=1w

ck
i ̸= 1 or MIN(W c

i ) < L do
4: Assign w

ck
i ← L if wck

i < L, for k ∈ [1,K]
5: Assign M ′ ← 1− |{wck

i |w
ck
i = L}| × L

6: Update w
ck
i ←

gk
Σkgk

×M ′, for k ∈ {k|wck
i > L}

7: end while
8: return W c

i

3. Experimental Setup and Results

We ran our experiment on the four class emotion classification
task on both MSP-Podcast and MELD. All experiments are im-
plemented by pytorch 1.12.1 [22], the parameters of each model
are initialized by the pytorch default setting and takes 12 to
24 hours to train on a Nvidia GeForce RTX 3090 GPU. Due
to the limitation of GPU memory, the batch size is set to 32.
Early stopping is applied with ten continuous patience. Models
are trained using a single cross entropy loss and updated by an
Adam optimizer with learning rate 1e-3. The criterion we use
to evaluate model performance is weighted-f1 score (WF1).

3.1. Testing Set

• Clean: The original testing set without any additive noise.
• Fixed SNR at 0dB, 5dB, and 10dB: Adding the noise and

music from the MUSAN corpus at the specified SNR levels.
The purpose of this testing set is for comparing the perfor-
mance with the model which augments the fixed SNRs.

• Unseen Noise: Adding noise from ESC-50 at random SNRs
in the range of [0dB, 30dB]. This set is for testing model ro-
bustness when exposed to unseen noise at unknown SNR.

3.2. Augmentation Strategy Comparison

• None: Using the original training set to train the model.
• Fixed SNRs: Using the fixed SNRs of 0dB, 5dB and 10dB

augmented noisy data and the clean set to train the model,
which is the most common approach for training noise-robust
SER [23, 24, 3].

• CopyPaste [5]: A recent SOTA that shows robustness against
noise for SER. We re-implement their data augmentation
method on the training set. There are two different schemes
for augmenting emotion samples, 1) concatenate the neural
and emotional sample as a new emotion sample, and 2) con-
catenate two emotion samples as a new emotion sample. The
utterances used to concatenate do not exceed 4 seconds to pre-
vent overfitting. We use both schemes to generate 80 percent
more samples from the original data set, and we further take
this expanded set to mix with noise (at SNR of 0dB 5dB and
10dB for both noise and music). The final total augmented
training data size is (1+0.8)×7×N=12.6N .

• MetricAug (Proposed Method): Using distortion metric-
lead augmentation strategy to train the model. We test three
metric distributions (STOI, PESQ, fwSNRseg) with two dis-
tortion levels quantizations method (Uniform, GMM).



Table 2: The weighted-f1 score (WF1) for all augmentation methods in each testing set.

MSP-Podcast None Fixed SNR CopyPaste MetricAug in Uniform Level MetricAug in GMM Level
Metric Distribution STOI PESQ fwSNRseg STOI PESQ fwSNRseg
Training Set Size N 7N 12.6N 2N 2N 2N 2N 2N 2N

Clean 59.56 60.72 60.08 61.24 61.52 59.85 *61.70 60.99 60.91
SNR 10dB 54.88 59.61 59.21 58.46 59.52 57.82 *60.16 59.57 58.68
SNR 5dB 51.58 58.14 57.67 56.98 58.31 56.18 *58.85 58.12 57.04
SNR 0dB 47.79 55.64 55.33 54.01 55.07 53.47 *56.95 55.28 54.36

Unseen Noise 55.03 59.78 58.79 58.40 59.70 58.18 *60.09 59.41 58.99

MELD None Fixed SNR CopyPaste MetricAug in Uniform Level MetricAug in GMM Level
Metric Distribution STOI PESQ fwSNRseg STOI PESQ fwSNRseg
Training Set Size N 7N 12.6N 2N 2N 2N 2N 2N 2N

Clean 50.48 50.59 51.86 51.91 51.54 51.17 *52.85 51.23 50.29
SNR 10dB 49.58 50.40 49.89 51.00 50.75 50.34 *51.66 50.00 50.28
SNR 5dB 47.96 50.05 49.50 49.52 50.01 49.36 *50.53 49.03 49.12
SNR 0dB 46.20 *49.95 47.57 47.42 48.07 48.75 49.23 48.27 48.34

Unseen Noise 49.56 50.87 50.21 50.92 51.46 50.66 *51.98 50.47 50.32

Table 3: Normalized WF1 (WF1clean−WF1noisy

WF1clean
) in each

GMM clustered leveling result Ck of metrics distribution on
MSP-Podcast for non-augmented model.

clean model STOI PESQ fwSNRseg
GMM C1 0.023 0.029 0.010
GMM C2 0.025 0.020 0.017
GMM C3 0.047 0.039 0.044
GMM C4 0.112 0.094 0.087
GMM C5 0.193 0.164 0.151

total *0.401 0.346 0.309

3.3. Result and Analysis
Table 2 shows a summary of 4-class emotion classification re-
sults. We will discuss various augmentation methods and per-
formance of each testing set.

3.3.1. Performance Comparison on Clean Testing Set

The STOI-GMM augmentation method obtains the best result
on both MSP-Podcast and MELD (the hidden dimension is
H = 16). In comparison to the superior outcomes achieved
through CopyPaste and Fixed SNR, the imrprovements obtained
for MSP-Podcast and MELD are 0.98 and 2.26, respectively.
When compared to the second-best result obtained from the pro-
posed method, the improvements for MSP-Podcast and MELD
are 0.18 and 0.94, respectively.

3.3.2. Performance Comparison on Fixed SNRs Condition

Under fixed SNRs scenario, we observe the STOI-GMM per-
form better than other metric-lead methods on both MSP-
Podcast and MELD. In MSP-Podcast, compared to the Fixed
SNR augmentation method, STOI-GMM augmentation im-
proves 0.55, 0.71 and 1.31 on the SNR 10dB, 5dB and 0dB,
respectively. Compared to the CopyPaste in the same condition,
the improvement reached 0.95, 1.18 and 1.62.

In MELD, STOI-GMM augmentation on the SNR 10dB
and 5dB condition leads by 1.26 and 0.48 compared to Fixed
SNR augmentation, respectively. STOI-GMM also exceeds
CopyPaste by 1.77, 1.03 and 1.66 in SNRs of 10dB, 5dB and
0dB, respectively. While both Fixed SNR and CopyPaste have
matched noisy condition, i.e., training and testing on the same
SNRs (10dB, 5dB and 0dB), STOI-GMM still outperforms al-
most all of the results of CopyPaste and Fixed SNR (except for
SNR 0dB in MELD). Also note that, our training set is only of
size 2N , which is the smallest among all methods.

3.3.3. Performance Comparison on Unseen Noise

While testing on unseen noise from ESC-50, the STOI-GMM
still obtained the best results. Compared to the next best result
from the other methods, it improves by 0.31 and 0.52 on MSP-
Podcast and MELD, respectively. This result shows that our
augmentation strategy is even robust against unseen noise types.

3.3.4. Distortion Metric Analysis

We further carry out an analysis to understand how an emotion
classification performance changes as a function on different
kinds of distortion metric used to lead the augmentation process.
We first evaluate the non-augmented (clean-trained) model per-
formance on clean set and noisy set. Then, we compute the gap
of WF1 between each GMM-quantized distortion level on the
set and the clean testing set result WF1clean−WF1noisy

WF1clean
. Ta-

ble 3 shows the sum of gaps for three different metrics STOI,
PESQ and fwSNRseg (0.401, 0.346 and 0.309). By referencing
the performance of MSP-Podcast in Table 2 using STOI-GMM,
PESQ-GMM and fwSNRseg-GMM (61.70, 60.99 and 60.91),
we see that if a metric has gap values that is larger (indicating
that a more severe model performance degradation due to in-
creased noisy conditions), using that metric to lead the augmen-
tation process is better. According to these results, the degra-
dation in SER performances seems to correlate more with the
distortion severity level as measured by STOI (measure of in-
telligibility) than by PESQ (measure of quality).

4. Conclusions and Future Work

In this work, we carry out a novel strategy of epoch-wise au-
tomation for training a noise robust SER model. We compare
the use of several speech distortion metrics to assess distortion
levels and further demonstrate the use of STOI is better than
two others (PESQ, fwSNRweg) metrics when leading the noise
augmentation. Our method consistently outperforms other aug-
mentation methods with smaller training sets and even can han-
dle unseen noise conditions. A limitation of our work is that it
focuses on the additive noise condition currently. An immedi-
ate future work is to extend the distortion types (reverberation,
background speech), and to improve the current method to work
without the need of iterative model performance evaluation.
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