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ABSTRACT In wireless telephony and audio data mining applications, it is desirable that noise suppression
can be made robust against changing noise conditions and operates in real time (or faster). The learning
effectiveness and speed of artificial neural networks are therefore critical factors in applications for speech
enhancement tasks. To address these issues, we present an extreme learning machine (ELM) framework,
aimed at the effective and fast removal of background noise from a single-channel speech signal, based
on a set of randomly chosen hidden units and analytically determined output weights. Because feature
learning with shallow ELM may not be effective for natural signals, such as speech, even with a large
number of hidden nodes, hierarchical ELM (H-ELM) architectures are deployed by leveraging sparse auto-
encoders. In this manner, we not only keep all the advantages of deep models in approximating complicated
functions and maintaining strong regression capabilities, but we also overcome the cumbersome and time-
consuming features of both greedy layer-wise pre-training and back-propagation (BP)-based fine tuning
schemes, which are typically adopted for training deep neural architectures. The proposed ELM framework
was evaluated on the Aurora—4 speech database. The Aurora—4 task provides relatively limited training
data, and test speech data corrupted with both additive noise and convolutive distortions for matched and
mismatched channels and signal-to-noise ratio (SNR) conditions. In addition, the task includes a subset of
testing data involving noise types and SNR levels that are not seen in the training data. The experimental
results indicate that when the amount of training data is limited, both ELM- and H-ELM-based speech
enhancement techniques consistently outperform the conventional BP-based shallow and deep learning
algorithms, in terms of standardized objective evaluations, under various testing conditions.

INDEX TERMS Speech enhancement, artificial neural networks, extreme learning machine, hierarchical

extreme learning machines.

I. INTRODUCTION

The goal of a speech enhancement algorithm is to ame-
liorate the intelligibility (the percentage of words correctly
recognized by listeners and/or the quality and level of resid-
ual noise in that signal) of a corrupted signal in adverse
conditions [1]. In the past several decades, the problem
of speech enhancement has attracted considerable research
interest [2], owing to the wide dissemination of voice-
based solutions for real-world applications, such as automatic
speech recognition [3]-[5], speaker recognition [6],[7],

speech coding [8], hearing aids [9], [10], and cochlea
implants [11], [12]. As new applications are deployed,
the definition of speech enhancement has broadened to
include not only the classical noise reduction problem, but
also the signal separation and reverberation problems. In this
work, we are concerned with the reduction of background
(ambient) noise, which is generally broadband and non-
stationary. In real-world applications, the level of back-
ground noise may significantly diminish the quality and
intelligibility of a speech signal acquired by a microphone
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to the point that it becomes useless for subsequent
processing.

Several single-channel speech enhancement methods
are available in the literature. However, the performance
of speech enhancement in real acoustic environments is
not always satisfactory, because improving intelligibil-
ity and quality concurrently is a challenging problem.
A class of speech enhancement methods, termed spec-
tral restoration, aims to design a filter or transformation
that attenuates the noise components to generate clean
speech. Notable techniques include the Wiener filter and
its extensions [13]-[15], the minimum mean square error
spectral estimator (MMSE) [16]-[18], the maximum a pos-
teriori spectral amplitude estimator (MAPA) [19], [20],
the maximum likelihood spectral amplitude estimator
(MLSA) [21], [22], and generalized MAPA [23]. Another
popular class of speech enhancement methods adopts
speech models for speech enhancement. Notable exam-
ples include the harmonic model [24], the linear pre-
diction (LP) model [25],[26], and the hidden Markov
model (HMM) [27]. A common limitation of most of these
conventional methods is that they rely on either the additive
nature of the background noise, or the statistical properties of
speech and noise signals. As a consequence, these methods
fail to properly contrast the non-stationary noise of real-world
scenarios in unexpected acoustic conditions.

Rather than assuming an explicit model, methods based
on non-linear mapping have also been adopted to address
noise reduction tasks. In such an approach, stereo train-
ing data is generally used to learn a non-linear mapping
function between noisy and clean speech. In the non-linear
mapping category, artificial neural networks (ANN) have
been shown to be a viable solution to effectively address
background noise issues [28], [29]. For example, in [30]
a single-hidden-layer with 160 neurons was employed to
estimate the instantaneous signal-to-noise ratio (SNR) level
of amplitude modulation spectrogram (AMS), and then the
noise was suppressed according to the estimated SNRs of
different channels. Alternatively, in [31]-[33] shallow ANNs
were used to determine a mapping between the noisy and
clean speech signals. Unfortunately, a lack of depth hindered
a comprehensive exploitation of the relationships between
noisy and clean speeches. By leveraging a greedy layer-wise
unsupervised learning algorithm [34], often referred to as pre-
training [35], the training of deep neural networks (DNNs)
can now be successfully designed, and the strong regres-
sion capabilities of deep models can be better explored. For
example, deep/stacked denoising autoencoders were used
to model the relationship between clean and noisy features
in [36] and [37]. Deep recurrent neural networks and long-
short term memory (LSTM) networks have also been adopted
in feature enhancement [38], [39]. In [40], a deep belief
network (DBN) with a restricted Boltzmann machine (RBM)
was used to design a facial expression recognition (FER)
system. Akhtar et al. [41] further exploited the performance
of neural networks by generating a K-support norm-based
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noise model, to train neural networks for adversarial noise.
Meanwhile, convolutional neural networks, which have a
better capability of modeling local temporal-spectral struc-
tures of speech signals, have been adopted as a fundamental
model for the speech enhancement task in [42], and a deeper
structure of convolutional neural network (DCNN) was used
for hand gesture recognition in [43]. A common issue with
ANN-based speech enhancers is the degraded performance
in the presence of unexpected noise. A simple, yet effective
solution to this problem is to cover many different types
of noise in the training set, as proposed in [44]. In addi-
tion to ANN, a generalized single hidden layer feedforward
network (GSLFN) [45] has been proposed for regression
problems in which the traditional single layer feedforward
network (SLFN) is extended by exploiting the polynomial
functions of inputs as output weights. In [46], the universal
enhancing capabilities of deep models were more thoroughly
investigated. In particular, the authors proposed a regression
DNN-based speech enhancement framework via training a
deep and wide neural network architecture using a large col-
lection of heterogeneous training data with four noise types.
Although DNNs can achieve outstanding noise reduction
results, deep neural models have two notable limitations:
(1) DNN considers a multilayer architecture as a whole
that is initialized by a computation-heavy unsupervised
initialization and fine-tuned by several passes of back-
propagation (BP) based fine tuning in order to achieve rea-
sonable learning capabilities - such a training scheme is
cumbersome and time consuming; and (2) huge amounts of
training data are needed to attain optimal performance [46],
which may limit the deployment of DNN-based solutions in
many real-world applications, especially when operated in
wearable or mobile client sides.

In this work, we propose an alternative speech enhance-
ment framework based on the unique and effective character-
istics of the extreme learning machine (ELM) algorithm [47],
namely extremely fast training, good generalization, and a
universal approximation/classification capability. ELMs can
play a key role in many machine learning applications, such as
traffic sign recognition [48], gesture recognition [49], video
tracking [49], object classification [50], data representation
in big data [51], water distribution and wastewater collec-
tion [52], opal grading [53], nonlinear time-series model-
ing [54] and adaptive dynamic programming [55]. In [56],
the authors have also demonstrated that ELMs are suitable for
a wide range of feature mapping applications, rather than just
the classical ones. Moreover, to take advantage of multi-layer
models, we deploy a speech enhancement algorithm with
hierarchical ELMs (H-ELMs). To the best of our knowledge,
this is the first work to apply ELM and H-ELM to the speech
enhancement task. To evaluate the noise reduction capability
of ELM and H-ELM, we conducted a series of experiments on
the standardized Aurora—4 noisy speech corpus [57]. Notably,
the amount of training data in the Aurora—4 speech cor-
pus is relatively limited in comparison to that used in [46].
Aurora—4 also provides a subset of the test data that allows
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an assessment in mismatch (SNR and channel) conditions.
The contributions of our results are as follows: (i) We have
demonstrated that ELMs are indeed a viable solution for
extracting clean speech features from the noisy counterpart,
and ELM-based speech enhancement is effective even when
testing data involving noisy type and SNR levels that are not
seen in the training data, and; (ii) when the amount of training
data is limited, the proposed ELM speech enhancement algo-
rithm outperforms the algorithms based on more conventional
BP-based neural networks under different testing conditions,
in terms of the perceptual evaluation of speech quality (PESQ,
a standardized speech quality evaluation metric), and seg-
mental signal to noise ratio improvement (SSNRI, a standard-
ized objective speech quality evaluation metric).

The remainder of this paper is organized as follows.
Section II introduces related work. Section III presents
the ELM/H-ELM based speech enhancement algorithms.
Section IV presents our experimental setup and results. The
conclusions from this study are discussed in Section V.

Il. RELATED WORK

In general, speech enhancement techniques can be cate-
gorized into two main groups, namely signal processing
solutions and data-driven approaches. In the following sec-
tions, we discuss the underpinnings of both approaches by
describing some prominent techniques in both groups. First,
the speech enhancement problem will be introduced more for-
mally through the spectral restoration method. Next, we will
briefly discuss key data-driven methods.

A. CONVENTIONAL SPECTRAL RESTORATION METHODS
Speech enhancement algorithms involve a transformation of
a noisy speech signal into the spectral domain to recover the
desired clean signal. A noisy speech signal y[n] is composed
of a clean speech signal x[n], and additive noise signal v[n],

y[n] = x[n] + v[n], (1

where n is the time index. A noisy signal is converted into
short time Fourier transform (STFT) domain to determine its
frequency and phase components. In STFT, the speech signal
is divided into short frames using a window function w(n).
The corresponding STFT speech signal can be expressed as

YIim,l] =X[m,I]4+ Vm,I], 2)

where Y[m,I], X[m, ], and V[m,[] are the mth frequency
bins of the noisy speech, clean speech, and noise spectra of
the /th frame, respectively, corresponding to frequency w,,
where w,, = 2mm/M, m = 0,1,....,M — 1. The
aim of noise reduction (NR) approaches is to restore x[n]
(or X[m, []) from y[n] (or Y[m, l]). For spectral restoration,
a gain function G[m, [] is estimated based on the computed
a priori SNR statistic and a posteriori SNR statistic. The
enhanced speech, X [m, 1], is obtained by filtering Y [m, []
through G[m, l]. The phase of the noisy speech is copied
and used to prepare the phase of the enhanced speech.
An inverse STFT (ISTFT) is applied to convert X [m, 1],
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m=0,1,...,M—1;1=1,2,..., L and the phase, to obtain
the enhanced speech X. Some of the notable techniques men-
tioned in the Section I, namely MMSE, MLSA, and MAPA,
are based on this approach.

B. DATA DRIVEN METHODS

1) NONNEGATIVE MATRIX FACTORIZATION

In nonnegative matrix factorization (NMF) based speech
enhancement, a speech data matrix ¥ € RM*L with M
frequency bins and L speech frames is projected to a space
that is a linear combination of a set of vectors, i.e., Y ~ WH,
where W = [WxWy] € RM*@«+PY) (Wy and Wy denote
the basis matrices of speech and noise, respectively) and
H=[HH}]" € RP«HPIXL Here, p,, p, < min(M, L) are
the numbers of encoding vectors for speech and noise (Hy
and Hy denote the encoded coefficient matrices of speech
and noise, respectively). NMF approximation is achieved by
using two alternative minimizing criteria: (1) the least square
criteria to minimize |V — WH ||? w.r.t W and H; and (2) the
generalized Kullback-Leibler (KL) divergence to minimize
D(V||WH) [58], [59].

During the speech enhancement training stage, NMF is
applied separately on clean and noisy data, in which magni-
tude spectrums of the speech (| X [m, []|) and noise (|V [m, []|)
are computed. Subsequently, the Euclidean distance between
the magnitude spectrum and the factored matrices is mini-
mized by the following update rule [58]:

wly
wTwH

YHT
WHHT

In the enhancement stage, a spectral gain is estimated and the
enhanced speech is obtained as

X[m, 1] = Glm, 1Y [m, [] “4)

H <~ H®

W~ W®

3)

where the gain function G[m, [] is formulated using a specific
statistical model and optimality criterion.

2) DEEP DENOISING AUTOENCODER (DDAE)

Recently, deep denoising autoencoders (DDAEs) have
demonstrated a tremendous performance in the field of
speech enhancement. DDAE is trained as a noisy-clean pair
to learn the statistical information between the clean and
noisy speech signals [60]. The aim of DDAE is to trans-
form the noisy speech signal to a clean speech by minimiz-
ing the reconstruction error between the predicted signal X
and the reference clean signal X, such that

0* = argmin(E() + pC(6)) Q)
0
with
E@®) = llp(Y) - X|% (6)

where p is a constant that controls the tradeoff between the
reconstruction accuracy and regularization term C(6) [37],
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¢(Y) denotes the transformation function of DDAE. During
the training phase, a DDAE is trained in a greedy layer-wise
manner and then used to estimate clean speech given noisy
speech signals as

mX[l) = a(W1Y[I] +b1),

hp_1(Y[I]) = e(Wp_1hp_2(Y[I]) +bp_1),
X[I] = Wphp_1(Y[I])+bp @)

Y] = [og(Y[L,11)...log(|Y[m, ). .log(|Y M, 1D
and _X[/] = [log(IXI1,11])...log(|IX[m,]])...
log(|1X[M, NPT are the Ith logarithm amplitude vectors of
the input noisy speech and estimated clean speech, respec-
tively; {W1 ... Wp} are the weight matrices, {b; ...bp} are
the corresponding bias vectors, and X[m, 1] is the logarithmic
amplitude vector of the enhanced speech. Furthermore, o is
the vector-wise non-linear activation function. The relation-
ship in Eq.(5) can be optimized by using any unconstrained
optimization algorithm. In particular, the Hessian-free algo-
rithm was adopted in [61] to compute this. During the
enhancement phase, the ISTFT is applied to the magnitude
spectrum together with the phase spectrum from the original
signal to reconstruct the waveform [46], [60]. The difference
between DDAE [60] and DNN [46] lies in the initialization,
where DDAE formulates the noise reduction (NR) task as
an encoding-decoding process, and DNN considers it as a
regression task.

Ill. EXTREME LEARNING MACHINE IN A NUTSHELL

A. THE ELM MODEL

The extreme learning machine (ELM) was proposed by
Huang et al. [47] for single layer feed-forward net-
works (SLFNs), to overcome issues of the BP algorithm.
ELM provides an efficient and quick learning process, which
does not require the massive fine-tuning of parameters [56].

1) SHALLOW ELM

The input weights and biases of the hidden layer in
SLFNs can be chosen randomly to learn N distinct obser-
vations [62]. Given N distinct observations (y;, x;), where
yi =ity ...yulT € R andx; = [xit, x...xy 17 € R,
the outputs of the SLFNs can be modeled as

0
fO) =Y Bowg-y;+by) ®)

g=1

where o (-) is the activation function, w, = [wig, wag, - - .,
w, Jq]T € R’ is the weight vector from the input nodes to
the gth hidden node, b, is the bias of the gth hidden node,
B, = [Bg. Bp2. ... Bul" € R is the weight vector from
the gth hidden node to the output nodes, and Q is the number
of hidden neurons. For the ith input vector, a standard SLFN
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aims to yield zero error, given as

N
Do) —xil =0 ©)
i=1
The above relation can be shortened as
HB =X (10)
where
[o(wi -y, +b1) o(wg -y + bg)
H = : : :
oW1 -yn +b1) owg -yn +b0) | y.p
G o
B=|: , X=]: (10a)
T T
-ﬂQ OxI XN AN xi
The output weight matrix B is computed as
B=H'X (11)

where H is the Moore-Penrose (MP) pseudoinverse of H,
which can be calculated using orthogonal projection methods
suchas HY = (H Ty Y lH T where HT H should be non-
singular, or HT = HT(HHT)_l, where HH” should be
non-singular.

In order to solve the linear inverse problem arising at
the ELM output, in this study we adopted a fast-iterative
shrinkage-threshold algorithm (FISTA) [63], which is an
extension of the gradient algorithm, and offers better con-
vergence properties for problems involving large amounts of
data.

2) HIERARCHICAL ELM

Inspired by DNNs, where features are extracted using a
multilayer framework with an unsupervised initialization,
Tang et al. [49] extended ELM, and proposed H-ELM
for multilayer perceptrons (MLPs). The overall structure
of the H-ELM model is illustrated in Fig. 1. The H-ELM
framework comprises two stages, i.e., unsupervised feature
extraction and supervised feature regression. In unsupervised
feature extraction, high level features are extracted using
an ELM-based autoencoder by considering each layer as an
autonomous layer. The input data is projected to ELM feature
space for feature extraction, in order to make use of infor-
mation from training data. The output of the unsupervised
feature extraction stage can then be used as the input to the
supervised ELM regression stage [49] for the final result,
based on the learning from the two stages.

3) ELM AND H-ELM FOR SPEECH ENHANCEMENT

In this section, we describe the use of ELM and H-ELM
for a regression model to perform speech enhancement.
Fig. 2 illustrates the system architecture of the proposed
ELM/H-ELM-based speech enhancement approach. The
main concept is to use an ELM/H-ELM model to transform
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FIGURE 1. H-ELM architecture.
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FIGURE 2. H-ELM-based speech enhancement architecture.

noisy speech to clean speech. The overall system includes
offline and online stages.

During the offline stage, a set of noisy-clean speech pairs
is prepared. The noisy and clean speech signals are first
converted into the frequency domain using the STFT to deter-
mine the frequency and phase components of the signal. The
logarithm power spectra (LPS) of the noisy and clean speech
spectra are then placed at the input and output sides of the
ELM model, respectively. More specifically, the goal of the
ELM/H-ELM system is to reconstruct the clean speech signal
from the noisy speech by minimizing the reconstruction error,
such that

E=|X-X|> (12)

where X is the estimated speech signal and X is the refer-
ence clean speech signal. According to ELM theory [56],
any continuous target function can be approximated as
Z?/:] If(Y[I]) — X[I]l = O, where Y[/] and X[I] are the
Ith logarithm amplitude vectors of the input noisy speech and
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estimated clean speech described in Section II-B.2, respec-
tively. The relationship in Eq.(8) can be written as

0
SO =) B,owy - Y1+ by) (13)
g=1
where w, is the weight vector, b, is the bias and B q is the
output weight vector of the gth hidden node. The relation in
Eq.(10) can be written compactly in matrix form as

HB =X (14)

where H is the hidden layer output, B is the output weight
and X is the estimated speech signal, given as

Co(wy - Y[1]+b)) o(wg - Y[114bg)

H = z z ,
| o(w1 - Y[N]+b1) o(wg - Y[N]+bg) NxQ
"7 X'

B=|: , X=| (14a)
8o OxM XN N <M

The corresponding output weight matrix for the estimated
speech signal can be computed as

B=H'X (15)

where H™ is the Moore-Penrose (MP) pseudoinverse of H
and is described in Section III-A.1, B is the output weight
matrix, and X is the estimated speech signal.

In the online stage, the noisy speech signals are first con-
verted into LPS and phase parts. The noisy LPS features
are transformed to obtain the enhanced ones by following
the steps in Eqs. (13) and (14) for the ELM/H-ELM models
(H and B) estimated in the offline stage. The phase of the
noisy speech is used to prepare the phase of the enhanced
speech. An ISTFT is applied to obtain the enhanced speech
signals.

IV. EXPERIMENTS
In this section, we present our experimental setup and results.

A. EXPERIMENTAL SETUP

1) AURORA-4 DESCRIPTION

The Aurora—4 [57] dataset was used to evaluate the per-
formance of the proposed ELM-based speech enhance-
ment algorithm. The Aurora—4 dataset includes speech data
recorded at two sampling rates, 8 kHz and 16 kHz. The
16 kHz speech data was used in this study. Aurora—4 con-
tains two training sets: clean and multi-condition. Each
set contains 7138 utterances, as shown in Table 1. In this
study, we employed these two training sets to train the
speech enhancement models (input data from the multi-
condition training set, output data from the clean training
set). The multi-condition training set was divided into two
blocks, each consisting of 3569 utterances, where 893 were
clean and the remaining 2676 were randomly contaminated

VOLUME 5, 2017



T. Hussain et al.: Experimental Study on Extreme Learning Machine Applications for Speech Enhancement

IEEE Access

TABLE 1. Aurora-4 Training set description.

TABLE 2. Aurora-4 Test set description.

Training Category Description
Set
Training Clean Speech with Sennhesier
Set 1 Clean data microphone (3569 utterances)
No noise
893 utt
Speech recorded ( Su era;lces)
with Sennhesier Peec .
. contaminated with
microphone K .
6 different noises at
(3569 utterances)
.. . .. at 10-20dB SNRs
Training Multi-condition 676
Set 2 data ( utter'dnces)
No noise
893 utterances
Speech recorded ( Su CI'LEICCS)
with 18 different peect
X contaminated with
microphones K .
6 different noises at
(3569 utterances)
at 10-20dB SNRs
(2676 utterances)

with six different background noises at SNR levels varying
from 10 to 20 dB. The first block of data was recorded
using a Sennheiser microphone, and the second block was
recorded using various microphones (so that the speech in
the dataset contained interferences with two different channel
conditions).

The testing set includes 4620 utterances, which were
divided into 14 testing sets, each containing 330 utterances.
The entire set was used to test the performance [57] under dif-
ferent noise and channel conditions. The testing data includes
six different noises, namely babble, car, restaurant, street,
airport, and train, with both matched and mismatched channel
conditions. The testing dataset was further classified into four
larger groups as shown in Table 2. Because Test Set 1 (Set A)
contained clean speech only, the corresponding evaluation
scores (PESQ, SSNRI, speech distortion index (SDI), and
short-time objective intelligibility (STOI)) are not included
for comparison in the following discussion. From Table 2,
it can be noted that Set B covered speech with additive noise,
Set C covered speech with convolutive noise, and Set D con-
tained speech with both additive and convolutive noises. Test
Sets C and D contained clean and noisy test utterances with
mismatch channel conditions (channel distortions). By ana-
lyzing Tables 1 and 2, we can confirm that both sets (training
and testing) are corrupted with the same noise types but with
different SNR conditions. Thus, we can consider the task used
in this study to be a training-testing mismatched task.

2) EVALUATION METRICS
Experiments were carried out in controlled conditions for an
unbiased evaluation of the performances of different config-
urations. Four standardized objective metrics, PESQ, SSNRI,
SDI, and STOI, were adopted for evaluation.

Among the four objective metrics, PESQ was used to eval-
uate the quality of processed speech [64], with a score ranging
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Test Set H Description H Category
Test Set 1 Clear}l spee?h with Set A
Sennheiser microphone
Test Sets Noisy speech containing 6
2.7 noises at 5-15dB SNRs with Set B
Sennheiser microphone
Test Set 8 Clean spe-ech using different Set C
microphones
Test Sets Noisy speech containing 6
9-14 noises at 5-15dB SNRs with Set D
different microphone

from —0.5 to 4.5. The higher the PESQ score, the closer
the enhanced speech is to the original clean speech. SSNRI
measures the difference in the segmental SNR between the
processed speech and the noisy speech [65]. A higher SSNRI
indicates a more significant SNR improvement. SDI corre-
sponds to the ratio of the energies of the residual speech
and clean speech signals. A low value of SDI indicates a
smaller distortion between the enhanced and clean speech
signals. STOI computes the speech intelligibility in human
listening tests [66]. A higher STOI value indicates better
speech intelligibility, and the score ranges from O to 1.
In the following discussion, the scores across the testing sets
(the clean test set, Test Set 1 in Table 1, was excluded) of the
Aurora—4 task are reported.

The speech signal was processed using a moving window,
with a size of 10 ms and a step of 5 ms. Then, the Mel-
frequency power spectrum (MFP) feature was calculated for
each speech frame. In this study, we used an 80-dimensional
MFP feature.

25

. ® RBF
® Tanh
H Sig
0.
0
500

1000 1500
Number of neurons

FIGURE 3. PESQ scores for ELM with different activation functions and
numbers of hidden neurons.

PESQ
- b e

W

B. EXPERIMENTAL RESULTS

1) ELM

In this section, the performance of ELM is investigated by
varying the number of neurons (Q) in the hidden layer in
Eq.(14) and the type of activation function. Fig. 3 shows the
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TABLE 3. Single result abstracted from average objective evaluation scores of ELM [500] and H-ELM [200 200 500] configuration.

ELM

H-ELM

Test Set

PESQ SDI STOI

SSNRI

PESQ SDI STOI | SSNRI

Set B 2.4070 | 0.4240 | 0.8110

8.7280

2.5410 | 0.3820 | 0.8300 | 9.2360

Set C 2.6900 | 1.5690 | 0.7990

7.4570

2.8270 | 1.7220 | 0.8170 | 7.3940

Set D 2.2510 | 1.2700 | 0.7500

11.2810

2.3680 | 1.4600 | 0.7670 | 11.3750

PESQ scores for ELM using different activation functions,
namely the sigmoid (Sig), hyperbolic tangent (Tanh), and
radial basis function (RBF), with different numbers of neu-
rons (Q = 500, 1000, and 1500). To assess which of these
activation functions performs the best, we used the same
set of training and test data. From Fig. 3, we note that the
PESQ values for the above-mentioned activation functions
monotonically increased with Q. These results demonstrate
that the RBF, Tanh, and sigmoid functions all consistently
returned performance improvements when the number of
neurons was increased. Meanwhile, the sigmoid activation
function achieves the best performance for different values
of Q i.e., PESQ = 2.3570, 2.3847, and 2.4151, when com-
pared with RBF (PESQ = 1.4293, 1.5261, and 1.5881) and
Tanh (PESQ = 2.2563, 2.2998 and 2.3106). Thus, in the
following experiments, the sigmoid function is used as the
activation function for ELM.

2) H-ELM VERSUS ELM

When compared with ELM, H-ELM leverages hierarchical
training to generate a sparse representation of the input data.
Then, the standard ELM, which is on the top of the hierarchi-
cal structure of H-ELM, performs the regression. To closely
study the performances of ELM and H-ELM, Table 3 presents
the PESQ, SDI, and SSNRI scores of ELM and H-ELM
for each test set. The learning accuracy of ELM/H-ELM
is dependent on a user specified regularization parameter
which needs to be selected carefully during experiments.
In our experiments, we tried different values of regularization
parameter to determine its impact on the performance. Here,
we only reported the best regularization parameter (=200)
in our speech enhancement task. As displayed in Table 2,
Set B, Set C, and Set D contained speech utterances with only
additive noise, only convolutive noise, and with both additive
and convolutive noises, respectively. From Table 3, it can be
noticed that ELM yielded higher PESQ and STOI values and
lower SDI and SSNRI scores for Set B than those for Set D,
because Set D includes additional convolutive distortions
with a mismatch channel. As Set C did not contain additive
noise, the PESQ score of Set C is higher than those of Set B
and Set D. In general, the same trend could be observed in
the H-ELM results, while the overall performance of H-ELM
is consistently better than that of ELM (higher PESQ, STOI,
and SSNRI scores) across Sets B and D. However, H-ELM
attained a lower SDI score for additive noises (Set B) and
higher SDI score for Set C and Set D when compared to

25548

12
11
10

9.8086
10.0815

9.7638
10.0779

9.7914
10.1631

= PESQ
m SDI

u STOI
m SSNRI

24834
2.3847

0.9781
8157

0

%
\n
o
i i hn I I
200 200 1000 200 200 1500 200 200
500 1000 1500

S P R N -
0.9824
0.8001
0.9381
0.7812
2 5471
0.9931
0.8089
24151

= 0.9617

= 0.9027
. (.7831

—— ) 357

< mm (.7817

%3
1=

Number of neurons

FIGURE 4. PESQ, SDI, STOI, and SSNRI average scores for ELM and H-ELM
configurations.

ELM, because of the channel mismatch, which increases the
distortion index for convolutive noises in Set C and Set D.

Fig. 4 shows the average results for the 13 testing sets
(Sets B, C, and D) across the four evaluation metrics, using
different numbers of hidden neurons for the ELM ([500],
[1000], [1500]) and H-ELM ([200 200 500], [200 200 1000],
[200 200 1500]) configurations. For an impartial comparison
with ELM, we used the same number of neurons in the regres-
sion stage (third layer) for H-ELM. Both ELM and H-ELM
are tested against the same Aurora—4 testing dataset, using the
sigmoid activation function. It can be seen that the H-ELM
framework demonstrated significant improvements in terms
of PESQ, STOI, and SSNRI, and maintained a stable per-
formance against a higher number of neurons. However, for
H-ELM the SDI score improved from 0.9824 to 0.9781 when
the number of hidden neurons increased from [200 200 500]
to [200 200 1500], whereas for ELM it jumped from 0.9027 to
0.9781 for an increase from [500] to [1500] hidden neurons.
To determine the optimal size for the H-ELM hidden layers,
we evaluated different configurations by changing the num-
ber of neurons in each layer. Experiments show that good
results can be achieved by fixing the first two layers with the
same number of hidden neurons and varying the number of
hidden neurons in the third (ELM) layer. The configuration
[200 200 X] was selected for H-ELM, where "X’ denotes the
number of hidden neurons for the third layer, because com-
pared to other configurations this achieved the best results
with a low number of neurons during speech enhancement
experiments.

It can be concluded by examining Table 3 and Fig. 4 that
ELM provided less distortion for a low number of neurons,
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but the distortion index deteriorated sharply as the number of
neurons increased. However, the distortion index increased in
H-ELM for a certain number of neurons, and then began to
decrease.

8000
4000

8000
4000 |

8000
4000

Frequency(Hz)

8000
4000

Time(Sec.)

FIGURE 5. Spectrograms of an utterance (a) clean (PESQ = 4.6439),
(b) noisy (PESQ = 2.2976), (c) ELM (PESQ = 2.3018), and
(d) H-ELM (PESQ = 2.5489) contaminated with babble noise.

Frequency(Hz)

Time(Sec.)

FIGURE 6. Spectrograms of an utterance (a) clean (PESQ = 4.6439),
(b) noisy (PESQ = 2.4433), (c) ELM (PESQ = 2.5258), and (d) H-ELM
(PESQ = 2.7345) contaminated with car noise.

3) SPECTROGRAM ANALYSIS

A spectrogram graphically represents the salient patterns of
the speech signal and is used to analyze the signal over time at
various frequencies. To visually compare the speech enhance-
ment performances for both ELM and H-ELM, we plot-
ted the spectrograms of the clean and noisy speech files
for each enhanced speech signal. Fig. 5 and Fig. 6 present
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the spectrograms of the same utterance contaminated with
two different noise types (babble and car, respectively) for
Set D with mismatch channel conditions. Fig. 5(a) and (b)
show the spectrograms of the clean and noisy speech signals,
respectively, with babble noise. Fig. 5(c) and (d) present
the enhanced speech signals for ELM and H-ELM using
the [1500] and [200 200 1500] configurations, respectively.
We can observe that both ELM and H-ELM successfully
reduced the noise components, and H-ELM provides a better
reconstructed speech signal than ELM. We also included the
PESQ scores of the utterances in Fig. 5 and the scores show
that H-ELM can more effectively improve speech quality than
ELM. Moreover, Fig. 6(a) and (b) show the spectrogram plots
for the corresponding clean and noisy speech, respectively,
corrupted with car noise. Here, we note similar trends as that
noted from Fig. 5. The H-ELM framework provides a higher
PESQ ( = 2.7345) than ELM (PESQ = 2.5258), where the
noisy speech signal had (PESQ = 2.4433) and contained both
additive and convolutive noises.

TABLE 4. Performance comparison of H-ELM frameworks using different
window sizes.

ws || Framework || PESQ || SDI [| STOI || SSNRI
[200 200 1500] || 2.5810 || 0.9780 || 0.8160 || 10.1600

[1000 1000 4000] || 2.5669 || 1.1301 || 0.8105 || 10.0851

1 [1000 1000 8000] || 2.5938 || 1.1364 || 0.8116 || 10.0928

[1000 1000 12000] || 2.5979 || 1.1684 || 0.8124 || 10.0794

[1000 1000 16000] || 2.6040 || 1.1862 || 0.8126 || 15.8031

[200 200 1500] || 2.6547 || 1.0228 || 0.8191 || 10.9900

[1000 1000 4000] || 2.7040 || 1.1405 || 0.8243 || 11.0340

7 [1000 1000 8000] || 2.7440 || 1.1499 || 0.8297 || 11.0527

[1000 1000 12000] || 2.7592 || 1.1450 || 0.8329 || 11.0753

[1000 1000 16000] || 2.7698 || 1.1576 || 0.8345 || 15.7461

[200 200 1500] || 2.5880 || 0.9930 || 0.8130 || 11.1300

[1000 1000 4000] || 2.7060 || 1.1202 || 0.8250 || 11.2100

11 [1000 1000 8000] || 2.7310 || 1.1616 || 0.8292 || 11.2324
[1000 1000 12000] || 2.7585 || 1.1805 || 0.8320 || 11.2371

[1000 1000 16000] || 2.7687 || 1.1525 || 0.8332 || 11.2656

4) DEEPER AND WIDER H-ELM

In the previous sections, we have observed that H-ELM
has superior capabilities as a regression model.
Therefore, an H-ELM-based regression model is better suited
for application to speech enhancement. To further scrutinize
the H-ELM performance, we varied the size of the input
speech vector by including more context at the input layer.
In this manner, deeper H-ELM structures are introduced, and
their performances measured. In particular, we considered the
following four configurations: H-ELM1 with 6000 hidden
neurons (hierarchical structure equal to [1000 1000 4000]),
H-ELM2 with 10000 hidden neurons (hierarchical structure
equal to [1000 1000 8000]), H-ELM3 with 14000 hidden
neurons (hierarchical structure equal to [1000 1000 12000]),
and H-ELM4 with 18000 hidden neurons (hierarchical struc-
ture equal to [1000 1000 16000]). Table 4 lists the resulting
enhancements for the following five H-ELM configurations:
H-ELM (hierarchical structure equal to [200 200 1500]),
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H-ELMI1, H-ELM2, H-ELM3, and H-ELM4, where the
dimension of the input window size (i.e. ws) is changed
from 80 to (ws * 80), in order to consider neighboring
input speech vectors including left and right alongside the
center speech vector. From Table 4, we can observe that
H-ELM4 outperforms H-ELM, H-ELMI1, H-ELM2, and
H-ELM3 in terms of PESQ for a window size equal to 1
(ws = 1). However, H-ELM4 introduced more distortion
(SDI = 1.1862) with less intelligibility (STOI = 0.8126)
compared with the basic H-ELM configuration (H-ELM with
configuration equal to [200 200 1500]) for a window size
equal to 1. The table clearly illustrates a small improve-
ment (overall improvement of 0.023) in the performance,
with a PESQ increases from 2.5810 to 2.6040, for H-ELM
configurations when the number of neurons increased from
1900 (H-ELM with configuration equal to [200 200 1500])
to 18000 (H-ELM4 with configuration equal to [1000 1000
16000]) in total, for a window size equal to 1. Moreover,
the PESQ score for similar configurations escalated almost
twofold, i.e. from 2.6547 to 2.7698 (overall improvement
of 0.1151) when the ws increased from 1 to 7. Similarly,
the performance further improved from 2.5880 to 2.7687 with
an overall improvement of 0.1807, when the ws increased
to 11. It is apparent from Table 4 that H-ELM demonstrated
better speech enhancement capabilities when the size of
the context window was increased. However, there was a
sudden drop in the performances of the H-ELM frameworks
when the input window size increased beyond 7, except for
H-ELM1, where the PESQ enhances from 2.7040 to 2.7060.
Although increasing the window size improved the intelli-
gibility (STOI) and the SSNRI scores for the three H-ELM
frameworks, it also introduced more distortion. The table tells
us that the best results were achieved by H-ELM4 (configu-
ration equal to [1000 1000 16000]) with an input window
size of 7. It is worth mentioning that the deeper structures of
H-ELM with a wider context window (ws = 7) proved to
be more effective in terms of the speech quality (PESQ) and
intelligibility (STOI) when comparing with an even larger
context (ws = 11), which degraded the performance by
considering irrelevant information.

5) H-ELM VERSUS DDAE

In this section, we compare H-ELM against a conven-
tional deep denoising autoencoder (DDAE), where we have
adopted a similar configuration to that reported in [60]. For
deeper structures, the autoencoder is trained using clean and
multi-condition data contaminated with six different back-
ground noises, as described in Section IV-A.1. We built four
DDAE based speech enhancement systems, namely DDAEL,
DDAE2, DDAE3 and DDAE4 with 3, 5, 7, and 9 non-
linear layers, respectively, each having 2048 hidden neurons.
The deeper structures of DDAE were compared with our
deeper H-ELM configurations. Namely, H-ELM1 was com-
pared with DDAEL, that has a total of 6144 ( = 2048*3)
hidden neurons; H-ELM2 with 10000 hidden neurons was
compared with DDAE2, which has 10240 ( = 2048%*5)

25550

hidden neurons; H-ELM3 with 14000 hidden neurons was
compared with DDAE3, which has 14336 ( = 2048*7); and
H-ELM4 with 18000 hidden neurons was compared with
DDAE4, which has 18432 ( = 2048*9) hidden neurons. The
learning rate during the training of the DDAE frameworks
was set to 0.0002, with a batch size of 5000. The numbers
of epochs for the four DDAE structures were set to 70.
Table 5 lists the speech enhancement results for these deeper
H-ELM and DDAE configurations with an input context
window size equal to 7. This was selected because it gave
the highest PESQ score (Section IV-B.4). By examining
Table 5, we can confirm that H-ELM outperforms DDAE in
terms of PESQ and SSNRI. However, H-ELM generated a
higher distortion (SDI) with a low intelligibility (STOI) score
compared with the DDAE frameworks. The table apparently
demonstrates that the performance of H-ELM is consistent
(increasing gradually) in terms of PESQ, STOI and SSNRI
for higher number of neurons, while the DDAE performance
showed inconsistency in terms of PESQ, SSNRI and SDI as
more layers and neurons were introduced. That is, PESQ,
SSNRI and SDI are degraded as the DDAE structure becomes
larger. The table explicitly demonstrates the behavior of the
DDAE structures by showing that adding more layers into the
DDAE structures (DDAE3 and DDAE4) and injecting more
neurons does not guarantee a good performance when the
training data is limited, and a sufficient amount of data is
necessary for DDAE structures to have a good generalization
capability. On the other hand, the H-ELM structures proved
to show a monotonically increasing performance for higher
numbers of neurons.

TABLE 5. Objective evaluation scores of DDAE and H-ELM alongside
traditional speech enhancement methods.

Method || PESQ || spl || stor || SSNRI
KLT 2.4907 12438 0.8594 9.5737
MMSE 2.5600 15212 0.8549 3.2246
RPCA 25615 18178 0.8426 1.6268
DDAE1 2.6767 1.0456 0.8293 10.6733
DDAE2 2.6783 1.0581 0.8330 10.6100
DDAE3 26731 0.9686 0.8385 10.5776
DDAE4 2.6664 1.0858 0.8401 10.3242
H-ELM1 27040 1.1405 0.8243 11.0340
H-ELM2 2.7440 1.1499 0.8297 11.0527
H-ELM3 27592 11450 0.8329 11.0753
H-ELM4 27698 1.1576 0.8345 15.7461

In addition, both learning algorithms are compared against
three different classes of speech enhancement algorithms,
i.e. a conventional spectral restoration approach in which
we used an MMSE-based noise reduction technique [67],
a subspace-based KLT [68] algorithm and noise reduction
based on robust PCA (RPCA) [69], to verify the perfor-
mances in speech enhancement tasks. It is evident that both
learning algorithms have attained a significant improvement
over the traditional methods, with improved PESQ, SDI, and
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SSNRI scores. However, the intelligibility of the KLT is
greater than for both of the above-mentioned learning algo-
rithms. The results in Table 5 demonstrate that H-ELM with
deeper configurations (H-ELM1, H-ELM2, H-ELM3, and
H-ELM4) outscored the KLT, MMSE, RPCA, and DDAE
methods with a reasonable margin. These results further con-
firm the advantages of H-ELM for achieving a satisfactory
NR performance with relatively few training samples.
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FIGURE 7. PESQ score for (a) DDAE1, (b) DDAE2, (c) DDAE3, (d) DDAE4,
(e) H-ELM1, (f) H-ELM2, (g) H-ELM3 and (h) H-ELM4, using different
amounts of training batch samples (TS).
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FIGURE 8. STOI score for (a) DDAE1, (b) DDAE2, (c) DDAE3, (d) DDAE4,
(e) H-ELM1, (f) H-ELM2, (g) H-ELM3 and (h) H-ELM4, using different
amounts of training batch samples (TS).

6) H-ELM SENSITIVITY TOWARDS THE TRAINING DATA

To analyze the sensitivity of the two learning algo-
rithms (DDAE and H-ELM), we progressively decreased the
sizes of the training batch samples (TS) in steps of 10%.
Initially, we used 150000 MFP spectral patches of the training
samples, which were reduced in 10% decrements to finally
reach 150 MFP patches. The number of epochs was also
reduced as the sizes of the training data were decreased.
Initially, we used 70 epochs to train 150000 MFP DDAE
frameworks, and which we then reduced the number of
epochs to 40 epochs as the size of the training data was
curtailed by 10% (i.e., 15000 MFP). We further reduced the
epochs to 30 when the size of the training data was decreased
to 1500 MFP and 150 MFP patches, respectively. The pur-
pose of such an investigation is to evaluate the stability of
each algorithm against the size of the training data. Fig. 7
and Fig. 8 present compact synopses of the two learning
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algorithms by means of PESQ and STOI, respectively, for
ws = 7. Overall, there is a drop in the performance for both
of the learning algorithms. However, the H-ELM frameworks
provided a considerably substantial performance, even when
the training samples reduced to 150 MFP patches in the
end. On close examination, the graph in Fig. 7 shows an
improvement in the performances of the DDAE frameworks
when the size of the training samples (TS) was increased
by 10%, from TS-150 to TS-1500. The PESQ score improved
from 1.7588 to 2.1920 (from level (D to Q) for DDAEI,
from 1.8507 to 2.1053 for DDAE2, from 1.8096 to 1.956 for
DDAE3 and from 1.6227 to 1.7798 for DDAE4 when the TS
is increased from 150 MFP patches to 1500 MFP patches.
The same trend can be observed when the size of the
training samples is increased from 15000 MFP patches to
150000 MFP patches (level ) and level @) for the DDAE
frameworks. However, it can also be noted that the perfor-
mances of DDAE3 and DDAE4 dropped rapidly as soon
as the training data was reduced by 10% (from TS-150000
to TS-15000), i.e., from PESQ =2.6731 to 2.2777 for
DDAES3 and from PESQ = 2.6664 to 2.2413 for DDAE4,
which acutely describes the sensitiveness of deeper DDAE
frameworks toward the training data. The performances for
DDAE3 and DDAE4 degraded severely as the size of the
training data was reduced by 20% (from TS-150000 to
TS-1500).

On the other hand, H-ELM proved to be highly resilient
against the reduction in the size of the training samples.
The PESQ score for the H-ELMI1 configuration escalated
from 1.9377 to 2.4706 when the size of the training samples
was only increased by just 10% (150 MFP to 1500 MFP
patches), as shown in Fig. 7. Similarly, the PESQ score
further improved from 2.6469 (MFP patches = 150000)
to 2.7040 for the next increment in the size of the train-
ing samples (level Q) to level @). Furthermore, the PESQ
score for H-ELM2 increased from 2.0122 to 2.7440 when
the size of the training samples was increased from 150 to
150000 MFP patches. The deeper structures of H-ELM
(H-ELM3 and H-ELM4) provided a steady performance in
terms of PESQ compared with the DDAE frameworks when
the size of the training data was reduced. We also measured
the effect of the reduction of training samples on the speech
intelligibility, which measures the comprehensibility of the
speech signal for the given conditions. Fig. 8 shows the
intelligibility (STOI) of the test speech signals for each of
the two learning algorithms with the limited training sam-
ples. The STOI score for the DDAE frameworks became
very poor when the patches were reduced to 150 MFP.
In contrast, H-ELM again proved to be very stable, even
for a training sample size reduced to 150 MFP patches. The
STOI for DDAE1 dropped from 0.8293 to 0.6575 (from
level @ to level (D), for DDAE2 the value decreased from
0.8330 to 0.6943, for DDAES3 it dropped from 0.8385 to
0.7009, and for DDAE4 it dropped from 0.8401 to 0.6547.
However, for H-ELM the decrease was not so drastic. For
H-ELM1, it declined from 0.8243 to 0.7764, for H-ELM2 it
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declined from 0.8297 to 0.7710, for H-ELM3 it declined
from 0.8329 to 0.7662 and for H-ELM4 it declined from
0.8345 to 0.7572.

Although both learning algorithms somehow maintained
quality and intelligibility for the reduced training samples,
DDAE, for which PESQ and STOI decreased most signifi-
cantly compared with the H-ELM frameworks, revealed the
sensitiveness of DDAE frameworks to the amount of the
training samples.

V. CONCLUSION

The present study has introduced novel ELM/H-ELM-based
speech enhancement methods, because we believe that the
extreme learning machine framework offers a universal
approximation capability through comparative measures.
We carried out several experiments to investigate the opti-
mal network structure. In addition, we used a hierarchical
framework to ameliorate the ability of ELM by replacing the
single layer with a multilayer model, whereby the distortion
levels were appropriately controlled to provide a better gen-
eralization performance, alongside a desirable speech quality
and speech intelligibility. To further verify the consistency,
we compared the performance of H-ELM with DDAE and
the traditional speech enhancement algorithms. Furthermore,
acoustic context information was considered to analyze the
performance against well-known learning algorithms. It turns
out that H-ELM can yield comparable or even better results
in terms of PESQ, STOI, SDI, and SSNRI compared with
DDAE-based methods when the amount of training data is
limited. To conclude, H-ELLM is confirmed to be effective
for speech enhancement tasks, especially when using limited
training data.

Multi-task learning and transfer learning approaches have
conventionally been adopted recently to improve the perfor-
mances of deep learning models. Moving forward, we will
adopt these two approaches in a new research study, to inves-
tigate the compatibility of H-ELM and achieve further
improvements in the performance. Moreover, we intend to
propose noise- and SNR-aware-based training criteria to
effectively enhance the capabilities. Again, this could be
another worthwhile future direction of research.
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