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Abstract—Mismatch between databases entails a challenge in performing emotion recognition on a practical-condition unlabeled
database with labeled source data. The alignment between the source and target is crucial for conventional neural network; therefore,
many studies have mapped two domains in a common feature space. However, the effect of distortion in emotion semantics across
different conditions has been neglected in such work, and a sample from the target may be considered a high emotional annotation in
the target but as low in the source. In this work, we propose the maximum regression discrepancy (MRD) network, which enforces
semantic consistency in a source and target by adjusting the acoustic feature encoder to minimize discrepancy in maximally distorted
samples through adversarial training. We show our framework in several experiments using three databases (the USC IEMOCAP,
MSP-Improv, and MSP-Podcast) for cross corpus emotion prediction. Compared to the Source-only neural network and DANN, MRD
network demonstrates a significant improvement between 5% and 10% in the concordance correlation coefficient (CCC) in
cross-corpus prediction and between 3% and 10% for evaluation on MSP-PODCAST. We also visualize the effect of MRD on feature
representation to shows the efficacy of the MRD structure we designed.

Index Terms—speech emotion recognition, generative adversarial network, cross corpus learning, semantic consistency, domain
adaptation
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1 INTRODUCTION

A FFECTIVE computing is a cognitive psychological pro-
cess linking the innate neuro-physiological process

to the distribution of human traits intertwined with mo-
tivation, thought, personality, and temperament through
computing. The perception of the behavior of an individual
is further affected by idiosyncratic factors, such as per-
sonal temperament, mood, and motivation are modeled
by commercial applications (e.g., natural human-computer
interface [1], health care [2], and marketing [3]). The eas-
ily derived signals from human extrinsic behavior include
facial landmarks, action units, and physiological signals [4].

Speech, which continues to be the most information-rich
and accessible message exchange medium for humans, is
employed for this kind of research. Compared with other
modalities, speech is the most accessible and has the least
cost for large collections. Speech emotion recognition (SER)
is the conventional application of emotion recognition. It
does not require bodily contact or expensive equipment
(microphone only); hence, it is more convenient to de-
tect emotion. Due to powerful techniques, deep learning
algorithms have emerged. People calculate more compli-
cated problems regarding emotions with more data-driven
learning methodologies. This was not possible in the past
because of the poor accessibility of emotion data and poor
computational power.

• Department of Electrical Engineering, National Tsing Hua University,
Hsinchu, Taiwan

• MOST Research Center for AI Technology and All Vista Healthcare,
Taipei, Taiwan
E-mail: cclee@ee.nthu.edu.tw

Practical conditions on SER are difficult. The conven-
tional approach for SER is context-dependent due to the
same distribution between the source and target, leading
to a model that performs well, yet is too expensive for
collecting and annotating a sufficient amount of emotion
data. In contrast, it is common that targets are collected in
different context. This may be completely different from the
specific environment of data behind the model, which could
cause a decrease in the prediction accuracy due to emotion
data as a source collected in a universal context. This may
be completely different from the specific environment of
data behind the model, which could cause a decrease in
the prediction accuracy due to emotion data as a source
collected in a universal context, which is set up with fixed
gender and interaction.

The constraint of data-driven techniques is the phe-
nomenon known as dataset bias or domain shift [5]. This
issue of non-robustness is especially evident when learning
to perform cross-corpus emotion recognition. Speech con-
tains major variability in emotional acoustic manifestations,
which are affected by context, such as the gender informa-
tion, language [6], recorded environment [7], application
domain [8], interaction type [9], and so on. Most real-life
emotion corpora for the emotional applications are often
highly contextualized. They result in a large mismatch in
practical conditions between testing data (target domain)
and training data (source domain).

Therefore, domain-adaptation methods have been pro-
posed for solving this situation. Several studies have
been conducted on this topic. Chang et al. trained an
adversarially-enriched acoustic code vector with a universal
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context database considering the emotion information in
the specific dataset and helping the prediction of the in-
context database[ [10], [11]] using the same distribution
with training and testing data, using other information from
another database in it afterward. It helps to improve the
robustness of emotion prediction but costs time. In contrast,
domain adaptation involves training on more universal
emotion data, testing on distinct data with a specific con-
text, and compensating for the degradation in SER per-
formance by transferring the related information from the
labeled data source domain to the unlabeled target domain.
There has been a long struggle to find a way to remedy
the accuracy decline in SER performance. Schuller et al.
trained cross-corpus emotion speech recognition based on
speaker-dependent feature normalization methods [12]. He
attempted to align marginal distributions between target
and source data via a few kinds of normalization. Maxi-
mum mean discrepancy (MMD) optimization, proposed by
Borgwardt et al. [13], is another method to align the cluster
between the source and target. Song et al. used maximum
mean discrepancy in the optimization procedure of non-
negative matrix factorization to address the SER domain
adaptation problem [14].

Further, Sun et al. proposed deep CORAL to learn a
nonlinear transformation that aligns the correlations of layer
activation in deep neural networks (DNNs) [15]. This is
an effective way to align target data with source data.
However, deliberately learning an indifferentiable common
feature space between the source and target data could
mitigate domain-specific idiosyncratic factors when per-
forming source to target emotion recognition. Deng et al.
introduced an adaptive denoising auto-encoder based on
an unsupervised domain adaptation method, where prior
knowledge learned from a target set is used to regularize
the training on a source set [16]. Zong et al. used a domain-
adaptive least-squares regression (DaLSR) model to take an
additional unlabeled dataset from a target speech corpus
serving as an auxiliary dataset and combined it with the
labeled training dataset from the source speech corpus [17].

An adversarial learning mechanism has also been used
in general domain adaptation. It assumes that, by aligning
the target and source emotion data distribution repeatedly,
the learned target feature representation can directly be used
to transfer the source emotion label to the correct target
label. This technique is based on the learning semantic
representations for unlabeled target samples by aligning
labeled source centroid and pseudo-labeled target centroid[
[18], [19], [20]]. For example, Abdelwahab et al. used a
gradient-reversal layer in a multi-corpus setting with three
databases to predict emotion attributes of arousal, valence,
and dominance [21]. Laradji et al. extended this idea by
adding triplet loss and metric learning to improve the state-
of-the-art unsupervised adaptation results for a vision task
[22]. However, mapping the target and source data into
an indifferentiable common space does not enforce any
emotion semantic consistency (i.e., source features of high
valence data may be mapped to target features of low va-
lence data). In the task of cross-corpus emotion recognition,
this semantic distortion is especially apparent in the valence
attribute, as demonstrated in the previous experimental
results.

Therefore, our goal is to mitigate this particular issue
of emotional semantic distortion in speech. Semantic dis-
tortion stems from misjudgment samples as a singularity,
which are similar to the specific source samples yet have a
distinct annotation from the specific source samples. Both
the emotion information and semantic distortion from the
source to target should be learned in the network to increase
the accuracy and recognize the singularity from the target.

Self-supervised learning is a good way to solve these
problems. Self-supervised learning has been researched for
several years in domain adaptation, aiming to allow the
model to be aware of the data differences and to overcome
them [ [23], [24]]. Sun et al. indicated that self-supervised
auxiliary tasks are effective in reducing domain shifts [25].
Saito et al. proposed an entropy minimization loss to en-
courage neighborhood clustering in the target domain with
self-supervision [26]. Moreover, it is also important to derive
the right distribution of the source within the duration of
self-awareness of the discrepancy of the singularity. Saito
et al. showed that the severity of the distortion can be
estimated using the quantified target discrepancy and in-
corporating this discrepancy in the procedure of learning
the domain-indifferentiable feature space [27].

In this paper, we propose a self-learning mechanism
called the maximum regression discrepancy (MRD) net-
work. Two regressors as an alternative view are employed
to discriminate a distorted sample and verify the distortion
from the original prediction in this network. These two
regressors act like two reviewers, giving a score for each
sample from the source and target. In emotion information
prediction, two reviewers check their answers with the
ground truth for the source sample as supervised learning.
If self-supervision mechanism finds the gap between these
two reviewers to be a discrepancy, we must minimize it for
the target samples. Learning the gap between these two
reviewers as a discrepancy helps the model react when
facing a distorted target sample.

We have proposed this framework in our previous work
[28]. Our MRD network enforces semantic consistency when
learning the common acoustic feature space with an adver-
sarial discrepancy mechanism (i.e., minimizing the maxi-
mum cross-corpus discrepancy). This work extends beyond
that work, proposing an MRD network to perform regres-
sion from speech by contributing in the following ways:

1) This paper explores the usability of the MRD network
structure within three databases: the Interactive Emo-
tional Dyadic Motion Capture (IEMOCAP) [29], Multi-
modal Signal Processing (MSP-Improv) [30], and MSP-
Podcast [31].

2) We compare the MRD network using the cross-corpus
discrepancy for the results of activation, valence, and
dominance.

3) We compare the MRD network with the DANN (un-
supervised domain adaptation by back propagation) in
similar database conditions.

4) We expand the structure of the MRD system with
several combinations of layers and regressors. We then
show the result in the largest data target.

5) We graph histogram on the prediction of the MRD
network to examine the effectiveness on bipolar anno-
tations and to observe the projection of the feature rep-
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Fig. 1: Adversarial discrepancy learning procedure of MRD network. Step 1 to train the entire network (Encoder and
both regressors) to consider semantic distortion on the net. Step 2 to maximize the discrepancy by regressors to shape
the highly-distorted representation. Step 3 to minimize the discrepancy by adjusting common space to reduce semantic
distortion within encoder. Step 4 to feed target data to evaluate MRD network

.

resentation and examine the semantic distortion with
the plots.

6) We plot the feature representation with t-SNE algorithm
to compare the domain adaptation from MRD network,
DANN, and the vanilla adaptation methods.

In our results , the MRD network demonstrates its su-
perior emotion regression results for these two methods.
With cross-corpus validation in different specific conditions,
the MRD can achieve 53%, 24%, and 36%, respectively,
while the SoNN achieves 39%, 17%, 34%, respectively in
terms of activation, valence, and dominance in the CCC for
IEMOCAP. With distinct context validation in larger data
size conditions, the MRD network can achieve 54%, 27%,
and 55%, respectively in terms of activation, valence, and
dominance. The rest of the paper is organized as follows.
Section 2 describes the database and our MRD network. Sec-
tion 3 presents the experimental setup. Section 4 describes
the experiment and results. Finally, Section 5 concludes with
future work.

2 RESEARCH METHODOLOGY

2.1 Emotion Databases

2.1.1 Interactive Emotional Motion Capture (IEMOCAP)
The University of Southern California IEMOCAP database
is an audiovisual English database. The database consists of
five dyadic sessions with a total of 10 actors (five males
and five females) grouped in pairs to engage in dyadic
face-to-face interactions. In each session, these actors were

requested to perform both scripted and spontaneous dialog
interactions, collected by motion capture and audio/video
data synchronously.

The design of the dyadic interactions was developed by
experts to elicit natural multimodal emotion displayed by
the actors. Approximately 12 hours of data are segmented
into utterances (a total 10039 utterances), and annotators
annotated the utterances of the actors using both categorical
emotion labels (e.g., angry, happy, sad, neural, etc.) and
dimensional representations (e.g., activation, valence, and
dominance) on a scale of 1 to 5. The categorical labels per
utterance were annotated by at least three raters, and the
dimensional attributes were annotated by at least two raters.

Given the spontaneous nature of this database and
the inter-evaluator agreement of around 0.4, this database
remains a challenging emotion database for algorithmic
advancement. For our work, we used activation, valence,
and dominance labels for prediction, and each one contains
an activation and valence label for scale mapping in ranges
between -3 and 3.

2.1.2 Multimodal Signal Processing-Improv (MSP-Improv)
There are over nine hours of audiovisual emotion recordings
in the MSP-Improv database. It has six predefined dyadic
scenarios. These scenarios were designed to improvise the
actors emotions and perform their natural emotional behav-
iors and to control the emotional content of the lexicon. In
addition, every scenario has a target sentence, where one of
the dyadic actors performs his or her behavior to allow the
main actor to speak the sentences contextualized in happy,
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TABLE 1: Performance of the SoNN, DANN and proposed MRD network on two different train and test mismatch condi-
tion.[IEMOCAP: USC-IEMOCAP corpus, MSP-improv: MSP-improv corpus] Noted: std : Standard deviation, PR: Pearson’s
correlation, CCC: concordance correlation coefficient, ∗ : significantly better than SoNN (p < 0.05), • : significantly better than
DANN (p < 0.05).

src MSP-Improv Activation Valence Dominance
tgt IEMOCAP PR std CCC std PR std CCC std PR std CCC std

ToT 0.61 .014 0.62 .015 0.44 .007 0.40 .007 0.46 .014 0.43 .010
MRD 0.61∗• .006 0.53∗• .005 0.25∗• .004 0.24∗• .005 0.44∗• .019 0.36∗ .016

DANN 0.59 .005 0.56 .007 0.27 .008 0.21 .003 0.38 .013 0.35 .011
SoNN 0.55 .011 0.39 .013 0.23 .003 0.17 .002 0.37 .013 0.34 .014

src IEMOCAP Activation Valence Dominance
tgt MSP-Improv PR std CCC std PR std CCC std PR std CCC std

ToT 0.65 .006 0.63 .009 0.43 .008 0.39 .007 0.50 .007 0.46 .009
MRD 0.62∗• .013 0.54∗• .019 0.30∗• .015 0.29∗• .016 0.41∗• .005 0.36∗• .006

DANN 0.59 .006 0.38 .016 0.22 .008 0.21 .010 0.38 .015 0.34 .015
SoNN 0.60 .012 0.43 .025 0.19 .009 0.18 .010 0.37 .021 0.34 .025

angry, sad, and neutral contexts. The approach allows the
actor to express emotions as dictated by the scenarios,
avoiding prototypical reactions that are characteristic of
other acted emotional corpora. In addition, the database is
segmented by speaking turns and utterances.

The database contains not only target sentences but
also sentences during the improvisations and the natural
interactions between actors during breaks. The MSP-Improv
was segmented into the utterance level (8386 utterances in
total). Each sentence is annotated with activation, valence,
dominance, and emotional categories by at least five anno-
tators and was conducted with a crowd-sourced evaluation
scheme [32]. The consensus label assigned to each speech
turn is the average value of the scores provided by the
collector of MSP-Improv.

We chose utterances with dimensional annotation at-
tributes (activation, valence, and dominance), total 8386
utterances. Each dimensional annotation is annotated with
an integer from one to five. In this paper, we map the
dimensional attribute annotation from -3 to 3.

2.1.3 MSP-PODCAST
The MSP-Podcast is an extensive speech collection database.
It contains 33262 recordings with multiple speakers from
audio-sharing websites that are licensed as Creative Com-
mons. It contains different conditions for large numbers of
speakers performing spontaneous conversations expressing
emotional behaviors. Noise, music, and overlapped speech
are not involved.

The same situation occurs with MSP-Improv. The record-
ings are segmented into speaking turns and last between
2.75s and 11s. The candidate segments were annotated with
emotional labels using an improved version of the crowd-
sourcing framework proposed by Burmania et al [33]. Each
sentence is annotated with activation, valence, dominance,
and emotional categories by at least five annotators on a
scale of 1 to 7.

We used activation, valence, and dominance labels for
prediction, and each one contains the activation and valence
label in scale mapping in the range of between -3 and 3. All
recordings were divided into three parts training, validat-
ing, and testing sets with 19707, 4300, and 9255 data, respec-

tively, which are denoted as PODinitial. At the same time,
we use different database settings from the paper in which
Abdelwahab proposed DANN [21], that is, 8084, 1844, and
4201 labeled sentences for training, validating, and testing
sets, respectively, which are denoted as PODadjusted. The
PODinitial sizes are almost twice that of the PODadjusted.

2.2 Acoustic Features
The OpenSMILE toolkit is employed in feature extraction
[34]. We used the INTERSPEECH 2010 Computational Para-
linguistics Challenge (ComParE) feature set in this work,
which consists of spectral, prosody, energy, and voicing-
related low-level descriptors (LLDs) that are further pro-
cessed by computing various statistical functionals (a total
dimension of 1582) [35]. First, the toolkit extracts 38 frame-
level descriptors (i.e., Mel-frequency cepstral coefficients
(MFCCs), pitch, jitters, shimmer, etc.), smoothing these de-
scriptors with a low-passing window. Second, all the LLDs
are calculated as high-level descriptors with mean, standard
deviation , skewness, kurtosis, and so on. A more detailed
description can be found in the previous work. We also
separately z-normalized this feature set for each corpus to
eliminate the feature value gap between corpora.

2.3 Maximum Regression Discrepancy Network
In this paper, we further discuss the MRD network. Fig.
1 illustrates our entire framework and the adversarial dis-
crepancy learning procedure. The procedure is divided into
three steps of the framework: the encoding, discrepancy
maximum, and discrepancy minimum steps. The labeled
data from the source domain data, denoted as (Xs, Ys),
and the unlabeled data from the target domain, denoted as
(Xt, Yt), are employed. The training of the MRD network
requires an encoder, E, and two regressors, R1 and R2.

Step 1 encoding: Encoder E is employed to train the
embedding feature for Xs. Two regressors, R1 and R2, train
two predictors to regress the emotional label separately. The
encoder and two regressors derive semantic information
from the source samples. Both are trained well with the
labeled source samples, and the loss function used in this
step is the mean squared error (MSE) loss defined below:
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TABLE 2: Performance of the SoNN, DANN and proposed MRD network on testing set of MSP-Podcast database in two different
setting PODinitial and PODadjusted using two database being source: [IEMOCAP: USC-IEMOCAP corpus, MSP-Improv: MSP-
Improv corpus] Noted: std : Standard deviation, PR: Pearson’s correlation, CCC: concordance correlation coefficient, ∗ : significantly
better than SoNN (p < 0.05), • : significantly better than DANN (p < 0.05).

Activation Valence Dominance
PODadjusted PODinitial PODadjusted PODinitial PODadjusted PODinitial

PR CCC PR CCC PR CCC PR CCC PR CCC PR CCC
ToT 0.76 0.72 0.73 0.72 0.31 0.16 0.31 0.25 0.70 0.65 0.65 0.64

MSP-Improv
MRD 0.57∗• 0.51∗• 0.54∗• 0.40∗• 0.15• 0.16∗• 0.27∗• 0.25∗• 0.61∗• 0.53∗• 0.55∗• 0.45∗•

DANN 0.55 0.39 0.53 0.38 0.13 0.09 0.21 0.24 0.58 0.38 0.53 0.35
SoNN 0.54 0.30 0.50 0.30 0.13 0.09 0.22 0.21 0.58 0.34 0.48 0.36

IEMOCAP
MRD 0.55∗• 0.54∗• 0.53• 0.49∗• 0.23• 0.22∗• 0.29∗• 0.29∗• 0.52∗• 0.46∗• 0.43∗• 0.36∗•

DANN 0.53 0.42 0.52 0.48 0.18 0.17 0.24 0.22 0.49 0.42 0.38 0.35
SoNN 0.52 0.40 0.50 0.44 0.22 0.17 0.28 0.21 0.47 0.37 0.34 0.30

min
E,R1,R2

Lmse(Xs, Ys)

Step 2 discrepancy maximum: The domain shift occurs
when the target sample is input into the model, degrad-
ing the performance due to semantic distortion. Hidden
distorted representations must be detected, preventing the
two regressors from converging to the same output. The
discrepancy distortion is estimated using the inconsistency
loss [36] derived from the output of the two regressors, f1(x)
and f2(x), defined below:

Ldis(Xt) =
1
K

∑K
k=1 |f1(xtk)− f2(xtk)|

Here, k denotes the number of batches. Note that R1

and R2 are initialized differently (i.e., using a different
number of layers to avoid converging to the same output).
We updated both regressors, R1 and R2, while fixing the
encoder E, which helps to detect the hidden distorted rep-
resentations. Distorted samples should be detected by the
inverse discrepancy loss. The regression loss of the source
should be involved in the objective function in this step
due to maintaining the efficiency in Step 1. The objective
function is defined below:

min
R1,R2

Lmse(Xs, Ys) − Ldis(Xt)

Step 3 discrepancy minimum: To narrow the distance
between the target sample and source domain sample, it
is necessary to minimize inconsistency loss while fixing
the same regressors to ensure the encoded features from
encoder E preserve the least distorted semantic informa-
tion. We updated the encoder, E, m times to minimize
the discrepancy while fixing the regressors. We trained a
good predictor in Step 1 for source data and lowered the
distortion sample of the target data when mapping it to
the source data distribution. Then, we let the target data
be mapped to the source distributionthat is, narrowing the
distance between the source domain and target domain in
the E encoded space. The objective function is as follows :

min
E

Ldis(Xt)

Here, we introduced the hyper parameter, m, which bal-
ances the procedure of the encoder and regressors in the

adversarial learning network. In this work, m = 3 in each
epoch. This parameter was determined experimentally.

Step 4 testing: After finishing the training of the MRD
network, given the test sample xt, the regression value rt is
obtained as follows:

rt =
f1(xt)+f2(xt)

2

This framework aims to eliminate the negative effect of
domain adaptation by training encoder E, which minimizes
the maximal semantic distortion from the corpora and two
regressors, R1 and R2, trained from the source data, to pre-
dict the source data reliably. These two regressor predictions
are distorted when predicting the target sample due to the
domain shift.

3 EXPERIMENTAL SETUP

In this work, we set up seven different experiments. Each
experiment provides a comparison of the different aspects.

Experiment 1 provides a performance comparison of
activation, valence ,and dominance in the unsupervised
domain adapted speech regression tasks between the MSP-
Improv and the IEMOCAP with several models and Exper-
iment 2 provides a comparison of the domain adaptation to
the target sample, MSP-Podcast in two setting (PODadjusted

and PODinitial) using the source sample between MSP-
Improv and the IEMOCAP with several models.

Experiment 3, 4 provides the structure analysis of the
MRD network with several combinations of layers and
regressors, then show the result in the largest data target.

Experiment 5 provides a experiment to observe the effec-
tiveness of the proposed method and to examine whether
the annotations of high and low are predicted rightly in the
MRD network, and Experiment 6 provides the projection of
the feature representation, examines the semantic distortion
with the plots.

Experiment 7 provides a visualization on the distribution
of the encoded space to analyze the generalization ability of
MRD and the comparison from other models on activation,
valence, and dominance.

The results of each experiment are reported in terms
of Pearsons correlation coefficient (PR) and concordance
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TABLE 3: Performance of MRD network of adjusting the regressor numbers on MSP-Podcast database in two different setting
PODinitial and PODadjusted. Noted: PR: Pearson’s correlation, CCC: concordance correlation coefficient

# of Regrssor Activation Valence Dominance
PODadjusted PR std CCC std PR std CCC std PR std CCC std

2 0.54 .014 0.47 .017 0.23 .008 0.19 .008 0.53 .014 0.45 .024
MSP-Improv 3 0.52 .014 0.44 .011 0.23 .004 0.19 .004 0.52 .012 0.44 .023

4 0.50 .013 0.40 .018 0.23 .008 0.20 .008 0.49 .010 0.40 .016
2 0.49 .012 0.45 .015 0.19 .005 0.17 .007 0.35 .011 0.27 .015

IEMOCAP 3 0.48 .010 0.43 .013 0.19 .007 0.17 .007 0.36 .015 0.27 .016
4 0.42 .010 0.39 .010 0.16 .012 0.16 .012 0.35 .010 0.25 .012

# of Regrssor Activation Valence Dominance
PODinitial PR std CCC std PR std CCC std PR std CCC std

2 0.52 .009 0.48 .018 0.11 .019 0.11 .019 0.52 .013 0.45 .021
MSP-Improv 3 0.52 .009 0.47 .014 0.13 .006 0.12 .015 0.51 .010 0.44 .029

4 0.52 .011 0.46 .015 0.13 .011 0.13 .012 0.49 .010 0.42 .038
2 0.53 .011 0.53 .014 0.22 .009 0.21 .009 0.40 .016 0.38 .014

IEMOCAP 3 0.52 .012 0.51 .012 0.21 .017 0.21 .018 0.39 .009 0.37 .009
4 0.51 .015 0.48 .015 0.19 .017 0.19 .017 0.39 .015 0.35 .013

correlation coefficient (CCC) between the ground truth and
estimated values. The variable PR is defined as follows:

ρx,y =
E[(X−µx)(Y−µy)]

σxσy

CCC is defined as :

ρc =
2ρσxσy

σ2
x+σ

2
y+(µx−µy)

2

Moreover, all results are trained 10 times, and we ob-
tained the average of the results. There are a couple of meth-
ods to compare our performance. Moreover, we compare the
performance of our proposed models with baselines and
conduct statistical testing using the Student’s t-test. (two-
tailed t-test, p-value < 0.05)

1) Maximum Regression Discrepancy Network:
For our proposed Maximum Regression Discrepancy
(MRD) network, the parameters of the MRD network
are listed below. The numbers of layers of the encoder
and both regressors are 4, 2, and 1, respectively. All hid-
den layer widths is [1024, 512, 256, 128], [128,64], [128]
respectively. The number of nodes are set to the power
of 2 depending on the number of layers following by
the network (if there are three layers, it will be [1024,
512, 256]), therefore, the nodes will vary in deep and
shallow experiment of Section 4.4. We also used batch
normalization, dropout (p = 0.5) and SELU as activation
function in all layers in which the function output is
normalized. Empirical observation has been shown the
use of SELU improving the convergence of adversarial
training in several researches [37], [38]. We use Adam as
an optimizer to minimize the objective function and the
number of epochs and the learning rate are determined
according to different tasks. In this study, the maximum
number of epochs is 100, and the learning rate ranges
from 1e− 6 to 5e− 6.

2) Domain adversarial neural network:
This is an unsupervised domain adaptation method
through propagation based on the method proposed
by Ganin et al [39]. We compared our results with
those of Abdelwahab et al. [21]. The technical structure

is similar to his previous work. We conducted three
parts of Domain adversarial neural network (DANN):
the encoder, task classifier, and domain classifier. The
numbers of each layer are 4, 2, and 1, and the hidden
layer is [1024, 512, 256, 128], [128, 64], and [128], which
is similar architectures with our proposed method. We
also employed batch normalization, dropout (p = 0.5)
and SELU as activation function in each layer, and the
batch size is 128.

3) Source-only neural network:
Source-only neural network (SoNN) is trained only
on the source domain and is regressed on the target
domain without any direct adaptation. We trained the
Source-only neural network (SoNN) in PyTorch. It is
divided into an encoder part and a classifier part. The
numbers of each layer are 4 and 1, and the hidden layers
are set at [1024, 512, 256, 128] and [128], which is similar
architectures with our proposed method. In addition,
we employed batch normalization and the dropout rate
(p = 0.5) in each layer. The activation layer is SELU for
all layers. The number of epochs is 100, and the learning
rate is 5e− 5.

4) Train-on-target:
Train-on-target (ToT) is the perfect condition for train-
ing. The DNN is trained and tested on the target do-
main. The same technical setting is used in the Source-
only neural network.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Similar Context Comparison
We explored the effect of the proposed model in different
dimensions of emotion. Chao et al. presented the results for
valence with their proposed model [28]. In addition, in this
session, the performance was expanded to cover activation
and dominance.

IEMOCAP and MSP-Improve are two emotion databases
with different predefined dyadic interaction context and
different actors but in a similar recorded environment. It is a
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TABLE 4: Adjustment of shallow difference of two regressors. Performance of MRD adjusting the shallow difference layer on
MSP-Podcast database in two different setting PODinitial and PODadjusted. Noted: PR: Pearson’s correlation, CCC: concordance
correlation coefficient

difference of Layers Activation Valence Dominance
PODadjusted pr std ccc std pr std ccc std pr std ccc std

2 0.53 .016 0.45 .017 0.24 .010 0.19 .013 0.52 .017 0.46 .022
3 0.52 .020 0.43 .020 0.23 .008 0.19 .010 0.52 .010 0.45 .018

MSP-imp 4 0.50 .024 0.35 .025 0.22 .010 0.20 .013 0.48 .012 0.38 .016
5 0.43 .024 0.35 .025 0.22 .010 0.20 .013 0.48 .012 0.38 .016
6 0.44 .018 0.32 .020 0.21 .013 0.20 .012 0.44 .012 0.32 .016
2 0.49 .010 0.46 .015 0.19 .012 0.17 .010 0.35 .014 0.27 .022
3 0.48 .013 0.43 .014 0.19 .008 0.17 .010 0.35 .012 0.26 .013

IEMO 4 0.46 .017 0.40 0.02 0.19 .009 0.18 .007 0.35 .028 0.25 .025
5 0.45 .017 0.37 .020 0.19 .012 0.17 .009 0.35 .019 0.24 .021
6 0.43 .016 0.33 .018 0.20 .013 0.15 .013 0.36 .013 0.24 .014

difference of Layers Activation Valence Dominance
PODinitial pr std ccc std pr std ccc std pr std ccc std

2 0.52 .014 0.47 .021 0.11 .016 0.11 .016 0.52 .016 0.44 .029
3 0.52 .013 0.47 .023 0.11 .017 0.11 .017 0.51 .013 0.46 .020

MSP-imp 4 0.52 .013 0.46 .037 0.11 .024 0.11 .025 0.50 .010 0.44 .024
5 0.51 .015 0.43 .027 0.10 .023 0.09 .022 0.48 .019 0.43 .029
6 0.50 .016 0.41 .021 0.09 .024 0.08 .025 0.45 .017 0.38 .037
2 0.53 .011 0.52 .012 0.22 .017 0.22 .018 0.40 .012 0.39 .012
3 0.53 .007 0.51 .006 0.21 .020 0.20 .020 0.39 .015 0.37 .013

IEMO 4 0.52 .010 0.48 .008 0.20 .014 0.19 .015 0.39 .013 0.34 .015
5 0.50 .009 0.44 .010 0.21 .021 0.20 .020 0.40 .010 0.33 .008
6 0.49 .004 0.41 .005 0.21 .023 0.18 .017 0.39 .020 0.32 .018

preliminary robustness verification of our proposed method
to train and test on each of these two databases alternatively.

Table 1 lists the performance for each condition. The
upper condition is the performance for MSP-Improv as the
source and IEMOCAP as the target. The lower condition is
the performance with IEMOCAP as the source and MSP-
Improv as the target. Each result is presented with the
PR and CCC with the standard deviation. The first row
presents the upper boundary CCC for domain adaptation,
which indicates the independent database prediction. We
also compare the difference from our proposed model with
DANN, SoNN and ToT, asserting their significance with t-
test at p-value < 0.05. There are several points regarding
the upper condition. First, the result from the proposed
MRD network can achieve 0.61 PR, which is equal to the
upper boundary CCC for activation and is much better than
the 0.59 and 0.55 PR derived from the DANN and SoNN,
respectively. The same trend occurs for dominance at 0.44
PR, where the PR performance of the MRD network is less
than that for Train-on-target method at 0.02 PR (4.5% of
relative degradation) and is more than the other networks,
increasing by 0.06 PR (13.6% of relative improvements).
Second, task on domain adaptation is relatively difficult
in terms of valence. The performance of these networks is
much lower than the Train-on-target method due to a severe
domain mismatch that degrades the performance (i.e., the
SoNN achieves 0.17 CCC). Although the PR performance
in the MRD is somewhat less than that for DANN at 0.25
PR and the PR performance at 0.27 is, conversely, better.
The MRD achieves 0.24 CCC, which increases 41.1% of

relative improvements over the SoNN and 14.2% of rela-
tive improvement compared to the DANN. In the lower
condition, the performance of the MRD is better than that
for the train-on-target method and DANN, with 0.02 CCC
(3.3% of relative improvement) and 0.11 CCC (57.8% of
relative improvement) improvements in terms of activation
and valence respectively. The performance of DANN in
terms of activation is lower than for the SoNN, yet the
performance of the MRD network is better than that of the
SoNN . Performance increases by 57.8% in CCC and 37.9%
in PR of relative improvement compared to the train-on-
target method for both PR and CCC in terms of valence and
by 10.8% in CCC and 5.8% in PR of relative improvement in
terms of dominance, respectively.

4.2 Distinct Context Comparison
The MSP-Podcast database contains different conditions for
numerous speakers performing spontaneous conversations.
Section 2 mentioned that the MSP-Podcast database is set
in two different situations, with PODinitial as the original
total size of the database and PODadjusted as the similar
database setting in the training and testing, as adjusted by
Abdelwahab et al. It is crucial to evaluate model capacity
with different sizes and contexts of data and to compare
the results with other networks; therefore, PODadjusted

employed 8084 samples in the training set, 1844 samples
in the validating set, and 4201 samples in the testing set.
In addition, PODinitial employed 19707 samples in the
training set, 4300 samples in the validating set, and 9255
samples in the testing set, which is discussed in this chapter.
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Fig. 2: The t-SNE algorithm are employed to plot feature representation transformed by the encoder from the MRD network,
DANN and SoNN for activation. Training on the MSP-Improv dataset and test on the MSP-Podcast corpus. It have been
marked in to three class, source, target that is marked low discrepancy distortion in the MRD network, target marked high
discrepancy distortion in the MRD network.

The robustness and stability of the proposed method are
proven with the performance of both situations.

Table 2 lists the results of two different settings on test-
ing set of the MSP-Podcast, PODadjusted and PODinitial,
with the source datasets IEMOCAP and MSP-Improv. These
results were compared to the Train-on-target method where
the model is trained and validated with training and val-
idating data and testing in the testing set from the MSP-
Podcast corpus (refer to the Train-on-target data in Table 2).
The MSP-Improv and IEMOCAP are employed as the source
data on these two datasets alternatively. We also assert the
significance with t-test at p-value < 0.05 to compare the
difference from our proposed model with DANN, SoNN
and ToT in this section.

First, we assessed the PODadjusted. The performance of
the MRD is much better than that of the DANN and SoNN
for these three kinds of annotations. It achieved a boost
of 0.21 CCC and 0.14 CCC from the proposed framework
compared to SoNN methods and is much better than the
DANN over 0.12 CCC for two distinct source databases
on activation. There is a similar tendency concerning dom-
inance. The PR performance of the MRD network is 0.61
PR and 0.52 PR compared to 0.58 PR and 0.47 PR of
the SoNN, which increased by 5.1% and 10.6% of relative
improvement, respectively. The remaining shows relative
improvements around 3.6% improvement from the DANN
to the MRD network for the PR in terms of the activation,
15.3% to 27.7% improvement for the CCC from the DANN
to the MRD in terms of valence, and 5.1% and 6.1% for the
PR improvement from the DANN to the MRD in terms of
dominance.

Second, we focus on the performance of the larger
database, PODinitial. When the target database is bigger,
the model capability is lower. Therefore, the three different
models (MRD, DANN, and SoNN) have a decline in perfor-
mance for each source of data for activation and dominance.
Although the performance declined within these networks,
it still significantly increases in relative improvements in
terms of activation and dominance, achieving a boost of 33%
(0.1 CCC) and 11.3% (0.05 CCC) for activation and 25% (0.09
CCC) and 20% (0.06 CCC) for dominance for the sources
of data from MSP-Improv and IEMOCAP. This implies

the stability and capability of MRD are better than those
of another network. Finally, the performance for valence
particularly outperforms the Train-on-target method in CCC
whether on PODadjusted or PODinitial.

The performance from the MRD network is even better
than that for the Train-on-target method (0.22 PR vs. 0.16
PR) and on PODadjusted (0.29 PR vs. 0.25 PR) for the source
data of IEMOCAP. There may be two reasons. First, valence
is difficult to predict from audio data. Second, the MSP-
Podcast contains too many complex contexts for training,
and it is easier to build a model from the relatively pure
context database (MSP-Improv and IEMOCAP).

4.3 Difference Regressors

The MRD network aims to eliminate semantic distortion for
each annotation from the source and target database. Two
regressors were employed in the original structure. We aim
to determine whether the number of regressors affects the
model performance or the formation of semantic distortion.
That is, can the framework be more robust in adjusting the
discrepancy of the distribution if we change the regressors
of the MRD network. We changed the number of regressors
to verify the assumption,

Table 3 summarizes the results of these assumptions
for two different settings for validating set of PODadjusted

and PODinitial as the target data samples. In addition, the
training model uses two different source datasets (MSP-
Improv and IEMOCAP for each setting condition). First,
MRD network with two regressors appear to perform better
for all conditions for the two sources in terms of activation.
Activation is more common in different emotion databases;
therefore, we only need two regressors to ensure the small-
est discrepancy. Second, correlation changes because the
distribution of the target domain variance becomes increas-
ingly different from the original distribution. The model
must be stable for practical situations, no matter how the
distribution of the target varies. In addition, the result
demonstrates that it is relatively stable for three regressors
than for other numbers of regressors due to the low standard
variation and its similar performance to other numbers of
regressors. However, it is unclear for valence because some
of the results indicate that more regressors are better than
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Fig. 3: Ground truth of samples from the MSP-Podcast corpus are divided into bipolar annotation. Each block (a, b, c, d)
represents histogram of (1) absolute difference and (2) difference from ground truth and prediction of the MRD network,
DANN, and SoNN. X-axis represents the numeric difference of ground truth and predictions. Y-axis shows the normalized
data samples with respect to different emotion states.

two. It can be an adjusted number to converge the system
of emotions experimentally.

4.4 Deep and Shallow Analysis
The MRD network trains different distributions in two
different regressors to minimize the semantic distortion
in the source and target. One more question is how the
difference between these two regressors can eliminate the
semantic distortion to improve correlation. We change the
layer number of the regressor to confirm this assumption.
The first regressor fixes the layer number, which is 1. The
other regressor changes its layer number so that the layer
difference for these two layers becomes a parameter that
we can discuss, the value of which is from 2 to 6. Table
4 summarizes the results of this experiment. These results
are evaluated on the validating set of PODadjusted and
PODinitial datasets which are used to check the adapta-
tion of large and small data sizes, and the MRD network
trains on two different source datasets (MSP-Improv and
IEMOCAP) for each setting condition.

The correlation decreases when the layer difference in-
creases. The result may lead to the assumption that different
distributions are needed to minimize the discrepancy; how-
ever, results become worse if the distribution is too distinct
to converge with the MRD network. The phenomenon is
that the prediction increases when the source of the data is
IEMOCAP when the data are larger, whereas the prediction
decreases when the source is MSP-Improv when the data
are greater but are more stable. It could be that the stability
of variance does not vary by the layer difference and that

the distribution does not vary that much when there are
more data. Based on these results, Classifier with 2 layers
toward the other classifier with 1 layers is the better choices
which derives good performance and owns relatively stable
variance.

4.5 Semantic Distortion Analysis

Semantic distortion is defined as the target sample similarity
to the source sample with annotation for distinct emotion.
The MRD framework has been proposed to detect semantic
distortion using discrepancy distortion loss; thus, semantic
distortion is examined in this subsection. Fig.2 displays the
projection of the feature representation.

Target samples from the MSP-Podcast corpus are calcu-
lated for discrepancy distortion loss and are divided into bi-
nary categories after training the MRD. Further, the DANN
and SoNN are trained well and marked with the class,
source, and target with low discrepancy distortion, and with
the target with high discrepancy distortion. Target samples
with high discrepancy distortion are clustered in a specific
area. These samples are hardly handled. As a result, the
target samples with high discrepancy distortion are divided
from the main distribution in the feature representation for
the SoNN. In contrast, the MRD framework is aware of the
sample with semantic distortion. Furthermore, the DANN
and MRD cluster these samples in the main distribution.
Target samples with high discrepancy distortion in DANN
are slightly divided from the main contribution, while target
samples with high discrepancy distortion in the MRD are
packed with all target samples with high discrepancy dis-
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Fig. 4: Feature representation transformed by the encoder from the MRD network, DANN and SoNN for activation,
valence and dominance trained on MSP-Improv corpus and tested on MSP-Podcast. These figures are produced by t-SNE
algorithm.

tortion in the main distribution. This implies that semantic
distortion is learned in the MRD framework.

4.6 Prediction Difference Analysis
The MRD network aims to decrease the emotional semantic
distortion of the target data by minimizing the maximum
discrepancy with the source data. We further discuss which
bipolar annotations are decreased by the model. It is easier
to examine this issue by dividing the annotations into high
and low to visualize the difference in the ground truth from
the prediction.

Fig. 3 illustrates the histogram plotted absolute differ-
ence and subtraction between prediction and label from
the samples of the MSP-Podcast corpus. We subtracted
each algorithm predictions from the label of the sample in
terms of activation and valence respectively. For (a)-(1), the
predictions from the MRD (perfectly match ground truth
around 15 %) are closer to ground truth than the predictions
from the SoNN and DANN(around 5 %). In (a)-(2), more
detail are told. The subtraction distribution are all nearly
symmetric. Although high activation are underestimated by
all the model(peak of distribution is in the right side of 0),
MRD seems to be more accurate compared to other methods
due to a closer peak to origin. Besides, for low activation in
(b)-(1), the predictions of DANN is slightly better than that
of MRD. In (b)-(2), it is observed that low activation may
be underestimated by all models(peak of distribution is in
the left side of 0), however, center of all the distribution are
nearly close. If we take (a)-(1) with (b)-(1), it is realized that
MRD’s distribution in high activation is closer to the origin
as well as MRD’s distribution in low activation is nearly

the same with other compared methods, leading to better
performance of MRD from DANN and SoNN.

(c) and (d) displays the histogram plotted the absolute
difference between prediction and ground truth from the
samples of the MSP-Podcast corpus in Valence. It seems that
SoNN is slightly better than MRD and DANN in (c)-(1). The
peak of distribution in SoNN is closer to the origin than
others, yet its range is wider in (c)-(2). For (d)-(1), the predic-
tions of MRD(perfectly match ground truth around 10%) are
much better than others (around 6%). The peak of MRD and
DANN are similar around -1, on the other hand, the peak of
SoNN are close to -2. From (c)-(2) and (d)-(2), it is shown
that MRD may have the same prediction situation with
DANN but also better than Source-only method. However,
these three models all result in suboptimal performances
in regressing valence which is also shown in session 4.2
(performance in valence is much worse compared to that
in activation or dominance).

These three models may all underestimate target sample
which make predicted values smaller than the ground truth,
e.g., prediction is -2 but ground truth is -3 or prediction is 2
but ground truth is 3. However, it can be observed that the
peak of distribution in activation from MRD are more closer
to 0 as well as the peak of distribution in valence from MRD
are a bit closer to 0 from Figure 1. Via adversarial training
on the discrepancy from the distance of target and source,
MRD network are forced to align source with target and
reduce the domain shift.
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4.7 Adaptation Visualization

Given the concern regarding the wrong domain adaptation
between the source and target data, the t-SNE algorithm was
employed to visualize the distribution of these datasets. Fig.
4 illustrates the 2D projection of the feature representation
using the t-SNE algorithm for three different algorithms,
MRD, DANN, and SoNN in terms of activation, valence,
and dominance. There are nine plots in this figure. Each
plot is labeled with a specific caption. For activation, the
differences are shown between these three algorithms. The
source and target can be distinguished from the SoNN.
There are still many target sample unions in the DANN
figure; nevertheless, it is indistinguishable, and both the
target and source are scattered over the whole plot. The
domain adaptation aims to let the source and target to be
located in the same distribution. The MRD network has
the best adaptation for activation. The situation is similar
to that for valence. The 2D projection of the DANN with
valence is that the target sample focuses on the left side;
however, the projection for the MRD network for valence
is fully scattered over the whole graph for the target and
source. The distribution of the target with the source of the
DANN for dominance is somewhat distinguishable. More-
over, comparing three distinct distributions of the MRD
network. The distribution from the valence is only one
distribution; nevertheless, the target sample for activation
and dominance seems to partially be on the lower side of
the distribution.

5 CONCLUSION AND FUTURE WORK

We proposed an innovative framework for emotion recog-
nition that can solve the problem of target and source
domain adaptation in the practical emotion recognition
context by understanding domain adaptation and semantic
consistency. The MRD network uses adversarial training
methods, maximizing discrepancy in the distribution of two
prediction regressors and minimizing the discrepancy of the
regressors from encoders to constrain the target domain.
Though the experiment, we demonstrate the cross-corpus
results of the MRD first to show this structure has over-
come other frameworks in two completely different emotion
databases. Then, we reveal the limitations of this model
in a more complex emotion database, MSP-Podcast, which
contains more contextual emotion information. Whether
there are fewer or more data in the podcasts, the MRD with
different source domains of emotion databases can outper-
form the Train-on-target method by a large margin. This
demonstrates the stability of the MRD network. Finally, we
illustrate the best structure in the MRD network with a few
different experiments. We consider the regressor numbers
from the results of the same database and consider the deep
shallow difference from the results.

In future work, further development is needed to explore
the limitations of domain adaptation with the MRD for
practical commercial applications. First, we should employ
more emotion databases to make a massive emotion base
to evaluate the efficiency of domain adaptation, for source
domains that should have the maximum variability. Second,
the MRD network can be expanded into different modalities

from audio. With a visual feature, it may perform even
better.
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[37] J. D. Curtó, I. C. Zarza, F. De La Torre, I. King, and M. R.
Lyu, “High-resolution deep convolutional generative adversarial
networks,” arXiv preprint arXiv:1711.06491, 2017.

[38] Z. Zhang, M. Li, and J. Yu, “On the convergence and mode collapse
of gan,” in SIGGRAPH Asia 2018 Technical Briefs, 2018, pp. 1–4.

[39] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky, “Domain-
adversarial training of neural networks,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 2096–2030, 2016.

Chun-Min Chang is a Ph.D student at the Elec-
trical Engineering Department of the National
Tsing Hua University (NTHU), Taiwan. He re-
ceived the B.S. degree in electrical engineer-
ing from National Tsing Hua University (NTHU),
Hsinchu, Taiwan in 2015. His research interests
are in affective computing, machine Learning,
human-centered behavioral modeling and infant
behavior analysis. He was the recipient of NTHU
Presidents Scholarship, NOVATEK Scholarship
and Elite-well Scholarship. He is a student mem-

ber of the IEEE Signal Processing Society.

Gao-Yi Chao graduated from the National Tai-
wan Tsing Hua University, with a Master’s
degree in Electronic and Electrical Engineer-
ing, specialised in speech emotion recogni-
tion(SER). His work focuses on the cross-corpus
and cross-modality SER. His recent publication
can be found in ISCA Interspeech and ACM ICMI
conference.

Chi-Chun Lee (M’13, S’20) is an Associate
Professor at the Department of Electrical En-
gineering with joint appointment at the Institute
of Communication Engineering of the National
Tsing Hua University (NTHU), Taiwan. He re-
ceived his B.S. and Ph.D. degree both in Electri-
cal Engineering from the University of Southern
California, USA in 2007 and 2012. His research
interests are in speech and language, affective
multimedia, health analytics, and behavior com-
puting. He is an associate editor for the IEEE

Transaction on Affective Computing (2020-), the IEEE Transaction on
Multimedia (2019-2020), and a TPC member for APSIPA IVM and MLDA
committee. He serves as an area chair for INTERSPEECH 2016, 2018,
2019, senior program committee for ACII 2017, 2019, publicity chair for
ACM ICMI 2018, sponsorship and special session chair for ISCSLP
2018, 2020, and a guest editor in Journal of Computer Speech and
Language on special issue of Speech and Language Processing for
Behavioral and Mental Health.

He is the recipient of the Foundation of Outstanding Scholar’s Young
Innovator Award (2020), the CIEE Outstanding Young Electrical Engi-
neer Award (2020), the IICM K. T. Li Young Researcher Award (2020),
the MOST Futuretek Breakthrough Award (2018, 2019). He led a team
to the 1st place in Emotion Challenge in INTERSPEECH 2009, and
with his students won the 1st place in Styrian Dialect and Baby Sound
subchallenge in INTERSPEECH 2019. He is a coauthor on the best
paper award/finalist in INTERSPEECH 2008, INTERSPEECH 2010,
IEEE EMBC 2018, INTERSPEECH 2018, IEEE EMBC 2019, APSIPA
ASC 2019, IEEE EMBC 2020, and the most cited paper published
in 2013 in Journal of Speech Communication. He is an IEEE senior
member and a ACM and ISCA member.


