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Abstract—In order to effectively allocate healthcare resource,
a proper triage classification system plays an important role in
assessing the severity of on-boarding patients at the emergency
department. One of the major items in the current triage
system is to assess the level of pain intensity, which relies
solely on patients self-report numerical-rating scale (NRS) at
the moment. The nature of self-report on pain level poses
a challenge in maintaining the validity and consistency of
the triage classification outcome. While there has been algo-
rithms developed to automatically detect pain from expressive
behaviors, most of them concentrate only on facial or body
gestural expressions within the context of physical exercises.
In this work, we propose to utilize stacked bottleneck acoustic
representations in a long-short term memory neural networks
(LSTMs) architecture as features for pain severity classification
in a database consists of patients during real triage sessions.
Our proposed framework achieves accuracy of 72.3% and
54.2% in binary and three-class pain intensity classification
tasks. Our results further demonstrate that the severity of pain
can largely be captured in the patients prosodic characteristics.

1. Introduction
Research in developing computational behavior analytics

from measurable signals, e.g., audio-video and/or physio-
logical data recordings, offer a new paradigm of quantitative
decision-making for the domain experts [1]. Development of
these behavior analytics are often grounded in their desired
applications by providing consistent and objective data-
driven measures of humans internal attributes. For example,
computational advancements have already been observed in
various applications within the medical domain: detection
of depression [2], [3], assessment of Parkinsons disease [4],
[5], modeling of therapists empathy in motivational inter-
views [6], [7], analysis of autism spectrum disorder [8], [9].
In this work, we carried out a collaborative behavioral signal
processing (BSP) research effort with medical professionals
toward automatically classifying pain level intensity of an
on-boarding emergency patients by modeling their vocal
characteristics during triage.

The Taiwan Triage and Acuity Scale (TTAS) [10] is
jointly developed by the Taiwan Society of Emergency
Medicine and the Critical Care Society, which modifies the
Canadian Triage and Acuity Scale (CTAS) [11] to tailor
toward Taiwan’s particular medical situations. It is officially
announced in 2010 by the Ministry of Health and Welfare
to be the triage system of Taiwan. The pain level is one of
six major regulators in the TTAS. While there has been a
number of assessment tools developed for measuring pain
in the medical domain, NRS, i.e., a 10-point self-report
numerical-rating pain scale, remains to be the gold standard
used in clinical practices [12], [13]. However, triage nurses
have noticed challenges in the practical implementation of
NRS especially for elderly people, foreigners, or patients
with low education level; this self-report rating additionally
suffers from various unwanted idiosyncratic factors, e.g., age
and body part dependency and inconsistent comprehension
of the pain scale. These issues often cause a deviation
in the validity of the emergency triage classification. As
a result, A joint collaborative work is initiated in order
to objectify measures of pain intensity during triage by
modeling patients multimodal behavior signals [14].
Most of the past engineering works in automatic recog-

nition of pain have concentrated mainly by monitoring facial
expressions or body gestures. For example, Littlewort et al.
showed that by capturing a subject’s 20 facial action units
from 26 video recordings, they were able to classify between
real and fake pain [15]. Guanming et al. proposed to extract
weighted local binary attern (LBP) as features to recognize
four different states of neonatal (calm, crying, moderate
pain, and severe pain) [16]. Kaltwang et al. utilized the
active appearance model (AAM) to quantify the subject’s
facial expressions in the UNBC-McMaster Shoulder-Pain
dataset of 25 subjects in order to automatically classify
pain versus no pain [17]. Aside from facial expressions,
researchers have also modeled body gestures and motion
descriptors in addition to facial expressions for pain de-
tection [18], [19]. The heavy focus on facial expressions
and body movements is partially due to the fact these
works have concentrated in situations where the subjects are
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being induced for pain experiences by performing physical
exercises.
Our goal is to model the pain intensity during emergency

triage where there is a natural spoken interaction between
a medical professional and a patient, not only the facial
expressions and the body gestures are available, but also the
verbal behaviors can be captured and analyzed. In fact, the
previous result indicated that vocal characteristics possess
substantial information about the pain-intensity level [14].
In this work, given the recent success of utilizing long-
short term memory neural networks (LSTMs) in obtaining
the state-of-art recognition accuracy across applications, we
develop a novel framework in leveraging stacked bottleneck
acoustic features using LSTMs for automatic pain classifica-
tion. Deep bottleneck features (DBFs) are generated based
on using deep neural networks with a structure in learning a
relatively narrower bottleneck hidden layer in order for form
a low-dimensional compressed representation of the original
input sequence features. Past works have demonstrated the
successful usages of DBFs in a variety of learning tasks.
For example, Song et al. proposed an improved i-vector
representation based on DBFs for language identification
[20]. Haag et al. proposed to use stacked bottleneck features
and Bi-directional LSTMs for expressive head motion syn-
thesis in spoken dialogs between actors; embedding stacked
bottleneck features architecture in modeling context and
expressive variability results in a significant improvement
over conventional feed-forward deep neural networks [21].
In this work, we derive stacked bottleneck acoustic

features by first pre-training an unsupervised sequence-
to-sequence LSTM autoencoder on a background Chinese
corpus and further fine-tuning it on the emergency triage
database. The fine-tuned output hidden layers are fed into
support vector machine classifier in order to perform the
final pain level classification. Our proposed framework
achieves a 72.3% accuracy in classifying between the ex-
tremes (severe versus mild) pain level and 54.2% accuracy
in performing a three-class (severe, moderate, and mild) pain
level recognition using only prosodic features. We also ob-
serve that the framework trained with prosodic low-level de-
scriptors (LLDs) outperform spectral-based (MFCCs) LLDs,
which implicates that the level of pain experienced may be
related more to the prosodic structures and voice qualities
of vocal expressions. The rest of the paper is organized
as follows: section 2 describes about data collection, deep
bottleneck vocal features, and pain classification, section
3 includes experimental setups and results, and section 4
concludes with future work.

2. Research Methodology
2.1. Triage Pain-Level Multimodal Database
The database included audio-video recordings, physi-

ological (heart rate, systolic and diastolic blood pressure)
vital sign data, and other clinically-related outcomes of on-
boarding emergency patients collected at the Department
of Emergency at Chang Gung Memorial Hospital1. We
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Figure 1. Demographics and the NRS pain level distribution of patients
used in this work. (a) Pain location distribution. (b) Clinical outcomes of
analgesic prescription and hospital disposition (c) The distribution of age
and gender. (d) The distribution of NRS pain level versus age

excluded pediatric, trauma patients, and referral patients or
patients with prior treatment before arrival, and we restricted
our inclusion criterion as patients with symptoms of chest,
abdominal, lower-back, limbic pain, and headaches. There
were two sessions recorded for each patient, i.e., at initial
triage and follow-up, where the follow-up session occurred
approximately 1 hour after the treatment, if any, was given
to the patient. These sessions essentially involved nurses
asking the patient for the location of the body pain, the
NRS scale of pain intensity (0-10, where 10 means the worst
pain ever), and a brief description on the type of pain felt
(for example, cramps or aches); it usually lasted around 30
seconds for each session. The audio-video data was recorded
using a Sony HDR handy cam on a tripod in a designated
assessment room, attempting to capture the patients vocal
and facial expressions.

Since the reliability of the NRS is crucial in the de-
velopment and evaluation of our automated classification
framework, we used a subset of the entire database in this
pilot work. There are a total of 63 patients reporting a
decrease in the NRS pain level between the initial and the
follow-up triage sessions after being clinically-intervened
with an analgesic prescription. This set of 126 samples can
be seen as the set of samples whose self-reported pain levels
are in accordance with the intended clinical validity in the
development of NRS in assessing pain, i.e., a patient should
report verbally a relieve in the pain symptoms after being
medically treated. Hence, we use this particular set of the
samples as the dataset of interest for this pilot algorithmic
development work. Further, we categorize the NRS into
three commonly-used pain levels, i.e., severe vs. moderate
vs. mild. Severe pain corresponds to the NRS score ranging
between 7-10, moderate is 4-6, and mild is 0-3. We set up
two different recognition experiments in this work: 1) binary
classification between the extreme pain levels, i.e., severe vs.
mild pain, and 2) three-class pain-level classification.
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Figure 2. It shows the complete architecture of our stacked bottleneck vocal feature computation used for automatic pain classification: unsupervised
learning with LSTM autoencoder to extract the bottleneck layer, fine-tuning the bottleneck layer on the patient’s acoustic data with supervised learning,
and performing recognition with the fine-tuned outputted layer after functional encoding using support vector classification.

2.2. Bottleneck Vocal Features with LSTM
Figure 2 shows the complete architecture of our stacked

bottleneck vocal feature architecture used for automatic pain
classification: pre-training LSTM autoencoder to extract the
bottleneck layer, fine-tuning the bottleneck layer on the
triage audio data with supervised learning, and performing
recognition using the fine-tuned outputted layer. In this
work, we choose to use LSTM due to its state-of-art ca-
pabilities in modeling long-term temporal dependencies and
help avoid the problem of vanishing gradient as compared
to recurrent neural network (RNN) [22]. Past work has
also demonstrated the effectiveness of deriving bottleneck
features using LSTM [23].
A typical LSTM is a time series model consists of forget

gate ft, input gate it, hidden/control state ht, update gate
zt, reset gate rt, and memory cell state Ct at every time
step t:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

where C̃t can be seen as a candidate memory cell state used
to generate the memory cell state Ct with the information
gathered from the previous cell state Ct−1.

Ct = ft ∗ Ct−1 + it ∗ C̃t

The output will be based on cell state and shown as follows:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Cho et al. [24] introduced Gate Recurrent Unit, or GRU,
a more dramatic variation on LSTM. It combines the in-
put and forget gate into signal gate which is defined as
zt = σ(Wz · [ht−1, xt]). The resulting model is widely used
and simpler than standard models. Finally, the output hidden
state is defined as follows:

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

Thus, given an input sequence X(x1, ..., xn), the above
LSTM architecture calculates and outputs the hidden states
(h1, ..., hn). Finally, it defines a distribution over the
output sequence Y (y1, ..., yn) give the input sequence
X(x1, ..., xn), p(Y | X), as below:

p(y1, ..., ym | x1, ..., xn) =
∏m

t=1 p(yt | hn+t−1, yt−1)

where p(yt | hn+t) is given by the softmax function.

2.2.1. Vocal Acoustic Low-level Descriptors (LLDs).
We extract two different types of input vocal descriptors
generated in Praat [25] at a framerate of 10ms in this work:

• Prosodic features: pitch, intensity and harmonic-to-
noise ratio (HNR), their delta and delta-delta

• Spectral features: 13 MFCCs and their delta and
delta-detla

Then for every frame t, we perform context expansion by
using a window of (t + 1, t − 1) resulting in a total of

315



27 dimensional low-level descriptors as input sequence X
for prosodic feature-based LSTM and 117 dimensional low-
level descriptors for spectral feature-based LSTM.

2.2.2. Unsupervised Pre-training LSTM Autoencoder.
We train an unsupervised LSTM sequence-to-sequence au-
toencoder on a background Chinese corpus, i.e., the DaAi
database. The DaAi database is a large collection of Man-
darin Chinese TV talk shows roughly includes 500 hours
of speech data. In this data, we select only a subset of the
DaAi containing 17,084 sentences totaling around 12 hours
of audio samples to train the LSTM sequence-to-sequence
autoencoder.
In particular, we pre-train a prosody-AE and spectral-AE

separately. Both autoencoders include 5 total hidden layers
of encoder-decoder; the prosody-AE has encoder-decoder
hidden layers with the number of nodes set at 27, 15, 8, 15,
27, and we set the number of nodes at 117, 80, 32, 80, 117
for the spectral-AE. The loss function used here is the mean
squared error, and the epoch used is 20.

2.2.3. Fine-tuning Stacked Bottleneck Layer. We then
encode each of the spoken sentences of each patient in the
triage database to the pre-trained bottleneck middle layer
(8 nodes for prosody-AE and 32 nodes for spectral-AE).
Then, we perform fine-tuning on these bottleneck layers by
adding two additional layers to their corresponding LSTM
(prosody-AE: 8, 32, 62, and spectral-AE: 32, 64, 128) with
binary and sparse categorical cross entropy loss function for
binary and three-class recognition tasks, respectively. The
epoch is set at 20. The output layer of the last time step
at the sigmoid and softmax layer for the binary and three-
class learning respectively is extracted as patients acoustic
representation at the sentence-level. These sentence-level
features are then fed into another layer of encoding in order
to perform the final pain classification for each patient for
a triage session.

2.3. Pain Level Classification
Since every triage is of different length resulting in a

varying number of sequences outputted from section 2.2.3.
We compute 15 different statistical functionals on the hidden
output to generate the final feature vector of each patient
for every triage session. The list of functionals includes
maximum, minimum, mean, median, standard deviation, 1st
percentile, 99th percentile, 99th − 1st percentile, skewness,
kurtosis, minimum position, maximum position, lower quar-
tile, upper quartile and interquartile range. The selected
classifier for training and recognition is linear-kernel support
vector machine.

3. Experimental Setups and Results
We report recognition results on 1) binary classification

between the extreme pain levels and 2) three-class pain-level
classification in this section. Accuracies are measured in un-
weighted average recall (UAR) with the evaluation scheme
done via leave-one-patient-out cross-validation. Except for
the pre-training, the rest of the learning steps are carried out
in the training set only.

3.1. Baseline Systems
We compare our method to two different baseline meth-

ods. The prosody-based baseline is done by first computing
6 prosodic features per frame (pitch, intensity and their
associated delta and delta-delta) on the patient’s speaking
portion of each triage session. Further, we perform session-
level encoding of these frame-level features using a repre-
sentational learning technique, the Gaussian Mixture Model
based Fisher Vector (GMM-FV) [26] - a method that has
recently been shown to perform competitively in tasks of
paralinguistic recognition using speech acoustics [27]. A
brief description is below:
For a frame-level data sequence X , we can define a

scoring function:

GX
λ = �λloguλ(X)

where uλ(X) denotes the likelihood of X given the
probability distribution function (PDF). We use GMM as
our PDF. λ represents the parameters of GMM, λ =
wk, uk,

∑
k, k = 1, ...,K. GX

λ is the direction where λ has
to move to provide a better fit between uλ and X . Fisher
vector encoding is derived by computing the following first
and second order statistics:

gXuk
=

1

T
√
wk

T∑
t=1

γt(k)

(
xt − uk

σk

)

gXσk
=

1

T
√
2wk

T∑
t=1

γt(k)

(
(xt − uk)

2

σ2
k

− 1

)

γt(k) is defined as

γt(k) =
wkuk(xt)∑K
j=1 wjuj(xt)

The concatenation of [gXuk
gXσk

] is the session-level feature
encoding that is used as the input to support vector classifier.
We also report accuracy on spectral-based baseline, which
computes 39 MFCCs (13 coefficients with delta and delta-
delta) as the LLDs instead.

3.2. Results and Discussions
Table 1 summarizes our recognition results on the two

NRS pain level recognition tasks, i.e., the binary classifica-
tion between the extremes and ternary classification between
the three pain levels. Prosody and MFCC indicate baseline
systems (section 3.1) using prosody and MFCCs features
respectively; DBAE-Prosody and DBAE-MFCC denote our
proposed stacked bottleneck LSTM recognition framework.
The best accuracy obtained in binary classification is the
MFCC baseline (73.3%) where the best DBAE approach is
the DBAE-Prosody (72.3%). In the more complex three-
class recognition problems, our proposed DBAE-Prosody
approach performs the best (54.2%) out of these four model.
One thing to note that since spectral features can be highly
sensitive to environmental factors, it is promising to see that
DBAE-Prosody, which relies only on a few number of low
level prosodic features, not only consistently outperforms
DBAE-MFCC but also obtains stable and reliable accuracies
across both binary and ternary recognition tasks. It may also
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TABLE 1. It summarized the Unweighted Averaged Recall (UAR) obtained in our pain-level recognition experiment. 2-Class indicated the binary
classification task between the extreme pain levels. 3-Class indicated the ternary classification between severe, moderate, and mild pain levels. The

number in bold indicated the best accuracy achieved within proposed framework. DBAE denoted Deep Bottleneck Feature Auto-Encoder Architecture

2-Class Prosody MFCC DBAE- Prosody DBAE- MFCC Prosody+ MFCC DBAE-Prosody+ DBAE-MFCC
Mild 77.5 70.0 85.0 62.5 67.5 67.5

Severe 68.1 76.6 59.6 74.5 76.5 80.9
UAR 72.8 73.3 72.3 68.5 72.0 74.2

3-Class
Mild 60.0 50.0 60.0 52.5 50.0 45.0

Moderate 41.0 46.2 28.2 41.0 46.2 38.5
Severe 51.0 61.7 74.5 57.4 55.3 68.1
UAR 50.7 52.6 54.2 50.3 50.5 50.5

points to the fact that a high degree of pain-related vocal
characteristics are reflected in the prosodic characteristics of
the patients.
We further perform recognition using a combination of

the two set of features (Prosody and MFCC) with late fusion
technique, i.e., by fusing the decision scores outputted from
the prosodic and spectral systems separately using linear
support vector classifier. The best accuracies obtained in
the binary classification is by fusing DBAE-Prosody with
DBAE-MFCC (74.2%), and the fusion of these two features
actually degrade the UAR to 50.5%. The use of MFCCs
need to be taken with caution since they are sensitive to the
recording conditions which may reflect differences in the
initial triage versus the follow-up triage instead of the actual
pain-level reported. however, additional detailed studies are
required to understand the effect. In summary, we observe
that our proposed novel computational framework of deep
bottleneck feature using LSTM auto-encoder architecture,
especially when trained on prosodic features, can obtain
promising recognition accuracies in classifying the levels
of NRS pain scale in a real emergency triage session.

3.2.1. Additional Analysis. We additionally present dif-
ferent accuracies obtained in the two recognition tasks by
altering the number of additional fine-tuning layers added to
the extracted bottleneck layer in DBAE-Prosody and DBAE-
MFCCs in Figure 3. The legend in Figure 3 indicates the
number of nodes in the outputted layers of final LSTM.
For DBAE-Prosody, the best accuracies obtained plateaus
when adding two additional layers in both 2-class and 3-
class tasks, and the same trend holds for DBAE-MFCC in
the 2-class recognition task.

4. Conclusions
Due to the inconsistency and subjective nature of the

currently implemented NRS pain scale, our aim is to develop
an objective method in measuring pain-level intensity of
patients during emergency triage. In this work, we propose
a novel computational framework in embedding bottleneck
vocal features in a LSTM architecture to automatically
recognize pain-level intensity for emergency room patients
during triage. The encoded bottleneck vocal features are
trained through unsupervised sequence-to-sequence autoen-
coder using a background corpus, which are then fine-
tuned on the target triage database. We demonstrate that

Figure 3. It shows the recognition accuracies obtained with a varying
number of additional hidden layers added in the fine-tuning of bottleneck
features. X-axis is the number of hidden layer, and Y -axis is UAR.

this novel approach especially DBAE-Prosody, which learns
only based on a few prosodic features, is capable of ob-
taining promising accuracies in both 2-class and 3-class
recognition task. To the best of our knowledge, this is one
of the first works that have used voice characteristics in
detecting pain and have contextualized such an effort in a
database collected out of real patients.

While the initial result is quite promising, there are
multiple future directions to pursue. One of the immediate
directions is to expand the scale of the current databases,
i.e., both in the collection of the actual triage sessions (our
aim is to collect at least 500 unique patients data) and
also in the utilization of the DaAi background corpus, to
enrich the behavior variabilities observed and modeled in
our current framework. Secondly, we would develop a joint
multimodal framework to include facial expressions and
body gestures into our classification system. On the analysis
part, we will investigate further the robustness of prosodic
features in characterizing the levels of pain intensity and also
conduct research into understanding not only the expressive
behaviosr but also the internal physiology (blood pressure
and heart rate) in relation to the pain levels. Lastly, pain has
recently been conceptualized as a homeostatic emotion [28],
which points potentially toward the use affective computing
technology as additional sources of information to charac-
terize this internal attribute of human. The overarching goal
is to finally develop an objective and quantifiable clinically-
valid measure of pain not only to replicate the current pain-
level assessment instruments but to provide supplementary
information that is beyond the established protocols to en-
hance the effectiveness of emergency triage classification.
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