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Abstract—Scenes are the most basic semantic units of a movie
that are important as pre-processing for various multimedia
computing technology. Previous scene segmentation studies have
introduced constraints and alignment mechanisms to cluster
low-level frames and shots based on the visual features and
temporal properties. Recent researchers have extended by using
multimodal semantic representations with the acoustic repre-
sentations blindly extracted by a universal pretrained model.
They tend to ignore the semantic meaning of audio and complex
interaction between the audio and visual representations for scene
segmentation. In this work, we introduce a mixture-of-audio-
experts (MOAE) framework to integrate acoustic experts and
multimodal experts for scene segmentation. The acoustic expert is
learned to model different acoustic semantics, including speaker,
environmental sounds, and other events. The MOAE optimizes
the weights delicately among various multimodal experts and
achieves a state-of-the-art 61.89% F1-score for scene segmen-
tation. We visualize the expert weights in our framework to
illustrate the complementary properties among diverse experts,
leading to improvements for segmentation results.

Index Terms—Movie, Scene Segmentation, Mixture of Experts,
Multimodal Attention, Audio

I. INTRODUCTION

Intelligent services, such as video retrieval, video under-
standing, and video tagging, aim at automatically handling
rich multimedia data for entertainment services. Many of
these services [1], [2] require reliable video segmentation to
obtain semantically meaningful clips for the downstream tasks.
Past studies have identified a lack of semantic consistency
in the movie hierarchy using conventional units for movie
segmentation, such as those based purely on frames or shots
[2]. A basic semantic unit in a movie is defined as a scene, de-
picting a semantically cohesive segment of a story [3]. Scenes
are tied to physical measures of narrative shifts and contain
consecutive shots that form a high-level concept of events [4].
The boundaries typically coincide with the discontinuity of
three factors: location, character, and time [4]. Due to the
complexity of movie contexts related to these factors, a scene
boundary cannot be easily identified with visual cues such as
a cut. Tools for direct frames and shot detection, hence, are
not applicable to the semantic scene segmentation task.

The importance of scene boundary detection is a key front-
end processing for multimedia technology, various studies
have developed algorithms using visual cues to segment scenes

for movies. For example, Chen et al. have automated video
editing rules for action scene segmentation [5]. Chasanis et
al. have used low-level features to cluster similar shots into
scenes [6]. Advanced algorithms have aligned sequences and
imposed constraints to cluster temporally related shots [7].
Dynamic programming has further improved optimization of
adjacent shot grouping by formulating a cost function of the
global shot similarity matrix [8]. Another branch of algorithms
regard the scene transition as a partition of a graph constructed
by the visual similarity of shots [9]. To capture the semantics
on the boundary, other studies have used pretrained models to
derive high-level representations. For example, Baraldi et al.
have considered places and objects semantics by extracting
pretrained embeddings for a Deep Siamese Network [10].
Most of the previous researches focused on visual semantics
while ignoring the acoustic aspect in movies.

Although some studies have computed low-level audio
descriptors or pretrained embeddings [8], [11], [12] for scene
segmentation, there was no sound multimodal approach until
Rao et al. proposed a hierarchical framework using 4 types
of multimodal pretrained representations. They established a
state-of-the-art scene boundary identification framework using
place, character, and action representations from visual con-
tents, along with STFT of speech and background sound [13].
However, these acoustic features were derived from simple
short-time fourier transformation which makes describing dis-
tinctively diverse semantics of audio non-intuitive. For in-
stance, a representation modeling environmental sounds for
the segmentation lacks harmonic properties of human speech
or music, which are also crucial to determine scene changes.
A change in speakers or music can suggest a transition point
of character interactions or a story. A change in music signal a
turning point of a story. That is, a framework that can integrate
diverse visual and acoustic semantics delicately is crucial for
scene segmentation of complex movie contents.

In this paper, we propose a mixture-of-acoustic-experts
(MOAE) framework which integrates multiple representations
to improve the multimodal scene segmentation. The MOAE
framework contains acoustic experts, multimodal experts, and
a mixture network, which generalizes from a multimodal
framework [13] to enable fusion of multi-experts. The acoustic
experts are learned by multi-aspect acoustic-based semantic
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Fig. 1. The acoustic expert(section II-C1) can perform boundary prediction using various acoustic features. The multimodal expert (denoted as MME and
described in section II-C2) combines place and acoustic features. We use five types of acoustic features for five acoustic experts and pair each of them with
place to train five MME experts. The MOAE framework(section II-C3) deploys a mixer network with learning constraints using the prediction probabilities
from five acoustic experts and five MME experts.

TABLE I
A SUMMARY OF EXTRACTED FEATURES.

Visual Pretrain Dataset Aspect

Place Places365 dataset Physical Scene
Cast CIM Dataset, PIPA Dataset Character instance
Action AVA dataset Character Action

Acoustic Pretrain Dataset Aspect

STFT AVA-ActiveSpeaker Time-localized Frequency
Speaker LibriSpeech Corpus Character Speech
VGGish Youtube-100M Dataset Acoustic Environment
PANNs Audio Set Acoustic Environment
Openl3 Music subset of Audio Set Music Information
Musicnn MagnaTagATune Dataset Music Information

representations including speaker, music, audio events, and
environmental sounds. A multimodal attention [14] module
combines visual representations with acoustic representations.
The mixture network provides further optimization of the
fusion results. We evaluated the framework on a database
including 1,110 scenes and obtained a 61.89% F1-score. We
compare to the state-of-the-art multimodal scene segmentation
work [13] and different ensemble learning approaches. Further
analyses on mixer weights revealed the complementary prop-
erty between acoustic and multimodal experts.

II. DATABASE AND METHODOLOGY

A. Database and Scene Annotation

Our database includes 10 movies ranging from 94 to 141
minutes. There are a total of 14k shots with 1,110 annotated
scene boundaries. A movie scene a sequence of semantically
cohesive shots. We follow a previous research [4] to form
annotation guidelines for cohesive shot boundaries as follows.
We first divide each movie into shots using a publicly available
tool [15] and then label each shot by judging if its ending
boundary is a scene boundary or not. Annotators identify a
change of an event in a movie as a scene boundary by con-
sidering three factors including shifts of locations, characters,
and time. Two annotators have labeled all the boundaries and
achieved 95% label agreement.

B. Multimodal Shot Representations

We use a set of pretrained models to extract shot rep-
resentations (summarized in Table I). Visual representations

are extracted from key frames using pretrained models for
place, cast, and action recognition tasks [13]. For acoustic
semantics, we extract various acoustic embeddings using pre-
trained networks on different audio tasks. VGGish [16] is a
pretrained convolutional neural network (CNN) for general
audio classification. PANNs [17] is a pretrained Wavegram-
Logmel-CNN on an audio tagging dataset, AudioSet [18].Both
model embeddings have been applied to various tasks, such
as environmental sound classification (ESC) and audio event
detection tasks. We use Openl3 [19], [20], a self-supervised
model, and Musicnn [21], [22], a music tagging model,
to extract music-related embeddings. Finally, we use Deep
speaker model [23] to extract speaker embeddings, which have
been applied to speaker verification tasks.

A movie contains a sequence of N shots which are rep-
resented by extracted shot representations [s1, ..., si, ..., sN ].
We use an LSTM embedding layer to encode the temporal
representations with its final hidden state si. This layer is
jointly optimized with the rest of the segmentation framework.

C. Framework
Our proposed MOAE framework comprises acoustic ex-

perts, multimodal experts, and a mixer network (figure 1).
We compute a sequence of shots S of length L (L << N )
as a boundary representation in the expert networks, and
classify whether this boundary is a scene boundary. The
mixture network is designed to combine decisions of the expert
networks for an optimized prediction.

1) Acoustic Expert and Segment Prediction: An hierarchi-
cal local scene segmentation network (HLSS) [13] is used as a
base network to identify semantic shifts on a boundary. Given
a sequence of 2wb (wb < L) shots [si−(wb−1), ..., si+wb

] for
the boundary between the i-th and i + 1-th shots, a shot-
level boundary network (BNet) in HLSS embeds shot relations
and differences for a boundary representation using a relation
branch Br and a difference branch Bd, respectively. Br

consists of a temporal convolution layer with max pooling to
capture frame relations in a shot. Bd consists of two temporal
convolution layers to learn representations of the current and
the next shots, and outputs the cosine distance between the two
representations. Each HLSS network using a type of acoustic
features f is regarded as an acoustic expert which can generate
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a concatenated embedding from Br and Bd as a boundary
representation bf

i . The boundary representation is then passed
through a Bi-LSTM layer followed by dense layers to generate
a hidden embedding Ef and prediction by a softmax layer.

2) Multimodal Expert and Segment Prediction: We propose
a multimodal expert to learn a audio-visual joint boundary
representations using multimodal attention (MMA) [14]. With
M types of feature, the feature set F = {f1, ..., fm, ..., fM}
are encoded as dstd dimensional boundary representations
B̂F
i = {b̂f1

i , ..., b̂fm
i , ..., b̂fM

i } using M distinct BNets. The
cross feature attention representation is computed using B̂F

i as
input to learn self-attention and directional attention weight.
For all m ∈ M , b̂fm

i is transformed into query vector qfm
and is applied to key vector Kfm and value vector Vfm , where
Kfm and Vfm are the linear transformations of B̂F

i . qfm , Kfm ,
and Vfm are then used to compute cross feature representation
ẑfmi : fm → (f1, ..., fm, ..., fM ). Finally, ẑfmi , for all m ∈ M ,
are concatenated with skip connections to form zFi .

3) Mixer Network and Constraints: We train a mixer net-
work to learn weights using experts’ hidden representations for
the fusion of the acoustic and multimodal experts. With NE

distinct expert models described in section II-C1 and II-C2,
we use the hidden representations Ef of all NE models as the
input for the mixer network. The mixer network using a Bi-
LSTM with dense layers which learns weights wi ∈ RNE

to combine NE distinct sets of prediction probabilities by
weighted sum.

To mitigate the mixture of experts(MoE) overemphasizes
the experts with higher accuracy [24], [25], we design three
novel constraints to regularize the weight learning. The vari-
ance constraint Dvar regularizes the expert weights wi by
maximizing the standard deviation of the weights. Scaled by
the range R of the weights, Dvar is expressed as follows:

Dvar = 1− 1

1 + tanh(α ∗R ∗ std(wi))

The confidence constraint Dconf regularizes the probability
difference between two classes, scene boundary pi1 ∈ RNE

and non-scene boundary pi0 ∈ RNE . Dconf penalizes too
much weight assignment to the expert predicting high predic-
tion confidence.

Dconf = 1− 1

1 + tanh(α ∗Rmd ∗ std(wi ⊙ |pi0 − pi1 | ∗ β))
Rmd = max(wi ⊙ |pi0 − pi1 | ∗ β)−min(wi ⊙ |pi0 − pi1 | ∗ β)

α and β are constants used to scale the loss terms. Each of the
constraints can be integrated into a new loss function through:

Total Loss = Lossce ∗ (1 +Dreg),

where Dreg can be Dvar or Dconf , and Lossce is the cross
entropy loss. Aside from the constraints, we introduce an
additional masking mechanism (denoted as Masking) as a
constraint on the prediction values of the experts. The mask
is designed to regularize too many scene boundaries predicted
in the shot sequence. Specifically, we aggregate positive class
prediction probabilities of consecutive scene boundaries as a

consecutive score for each expert. We mask out an expert with
a zero weight if the expert has top K consecutive scores.

III. EXPERIMENT

A. Experimental Setup

We conduct 5-fold cross validation experiments and evaluate
classification results using average precision (AP), intersection
of union (Miou), recall, precision, and F1-score.

• Exp. I: Comparison of unimodal and multimodal experts
• Exp. II: Comparison of ensemble approaches
• Weight analysis: Examining the weights from the mixer

network in Exp II and the corresponding movie shots.
In Exp. I, HLSSX (section II-C1) and MMEX (section

II-C2) denote expert models using different features, where
X indicates the type of feature described in section II-B or
the combinations of multiple types of features. HLSScombine

includes place, cast, act, STFT features and is regarded as
the most current state-of-the-art baseline for the multimodal
scene segmentation task [13].

In Exp. II, we use the mixer network including 10 experts
marked with ”*” in table II to compare various constraints and
ensemble approaches as follows:

• Majority V oting: Majority voting using expert predic-
tions from the 10 expert models.

• Unweighted Averaging: The unweighted average of
prediction probabilities of 10 expert models.

• Stacking: Inputting ten expert models’ prediction proba-
bility to support vector machine (SV C) or logistic regres-
sion (LR) as a meta-learner for boundary classification

• MOAEY : Mixture of acoustic experts using constraint
Y described in section II-C3

We train the HLSS and MME frameworks for 60 epochs
with Adam optimizer and a weight decay of 0.0005. The
learning rate is chosen from {10−3, 10−4} and is divided by
10 at the 30th epoch. The mixer network is trained for 20
epochs with Adam optimizer and a weight decay of 0.005.
The learning rate is 10−4. The weight ratio on losses for non-
scene and scene boundary is 1:10. L and wb are 10 and 2. α
is chosen from {0.1, 1, 10}, β is 10 and K is 3.

IV. RESULTS

A. Comparison of Unimodal and Multimodal Experts

We first compare to the state-of-the-art approach [13] using
their proposed single modality and multimodal features, and
demonstrate the results in the first part of Table II. The results
indicate that scenes are highly related to the physical space,
i.e., HLSSplace outperforming the same framework trained
with three other features extracted from our movie database.
Interestingly, HLSScombine and HLSSplace performed simi-
larly even though HLSScombine used four semantic features
(3 visual + 1 audio) as shot representations. That is, simple
multimodal fusion cannot effectively leverage the complemen-
tary information among the features. The middle part of table
II are the results of the acoustic experts. V GGish, PANNs,
and Openl3 provide comprehensive details describing general
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TABLE II
THE RESULTS OF EXP I, INCLUDING HLSS(SECTION II-C1) AND

MME( SECTION II-C2).

Method AP Miou Recall Precision F1
HLSSplace 53.7 52.3 74.93 35.36 47.48
HLSScast 31.9 44.1 64.29 24.81 34.97
HLSSaction 30.3 43.5 64.73 22.69 33.14
HLSSSTFT 13.3 13.7 6.68 8.56 6.46
HLSScombine 51.9 52.5 74.45 35.07 47.27
*HLSSPANNs 44.0 47.0 73.57 26.87 39.19
*HLSSspeaker 24.8 41.2 56.36 19.95 29.04
*HLSSMusicnn 27.1 40.7 53.69 22.56 31.26
*HLSSOpenl3 41.3 49.9 59.21 31.65 40.73
*HLSSV GGish 45.9 46.5 75.91 26.77 39.11
*MMEplace speaker 61.1 54.3 78.71 36.69 49.74
*MMEplace PANNs 66.2 57.7 80.35 40.22 53.08
*MMEplace Musicnn 56.6 54.7 75.3 37.9 50.00
*MMEplace Openl3 63.9 58.2 75.95 44.46 55.45
*MMEplace V GGish 61.8 59.2 70.28 45.87 54.05

Methods marked with ”*” are used to extract hidden representa-
tions and prediction probabilities in Exp. II.

environment and events of a movie scene from audio tracks.
These three experts achieved higher performance than cast
and action experts. In contrast to the general-purpose acoustic
representations, Musicnn and speaker provides the informa-
tion for more specifically designed scene transition techniques.
The lower part of table II shows the results of MME
models. MMEplace PANNs obtained 27.6% and 23.3% rel-
ative AP improvement over HLSScombine and HLSSplace,
and MMEplace Openl3 achieved 17.3% and 16.8% rela-
tive F1 improvement, respectively. MMEplace speaker and
MMEplace Musicnn obtained 13.8% and 5.4% relative in-
creased AP compared to HLSSplace, and improved F1 rel-
atively by 4.8% and 5.3%, respectively. In contrast to HLSS
models, MME enables the model to integrate semantic infor-
mation from various modalities. For example, the multimodal
HLSS degrade the performance using Musicnn and speaker
due to dominant performance of place while MME has
learnable attention weights to flexibly address this issue.

B. Comparison of Ensemble Approaches

Table III shows the overall results of Exp. II. MOAE, the
mixer network without constraints, leveraged the multimodal
expert diversity and improved segmentation performance with
57.36% F1-score. Both MOAEDvar and MOAEDconf

, de-
signed to limit the imbalance of mixer weights, introduced
3.7% relative improvement over MOAE in F1-score. While
MOAEMasking improved F1 and precision score, recall
and AP slightly decreased. This indicates the fact that cor-
rect predictions could sometimes be masked due to con-
secutive scene boundaries. MOAEA, jointly constrained by
Dvar and Masking, further increases 7.9% relative F1-score
compared to MOAE. MOAEB applying both Dconf and
Masking to the mixer network can also attain improve-
ments. The decision fusion methods (Majority V oting and
Unweighted Averaging) outperform either MOAEDvar or
MOAEMasking . However, when both constraints simultane-

TABLE III
THE RESULTS OF EXP II. A DENOTES CONSTRAINTS WITH Dvar AND

Masking, AND B DENOTES CONSTRAINTS WITH Dconf AND Masking.

Method AP Miou Recall Precision F1
MOAE (section II-C3) 65.2 59.5 76.72 45.56 57.36
MOAEDvar

66.6 61.2 77.62 48.79 59.47
MOAEDconf

66.9 61.4 77.29 49.02 59.47
MOAEMasking 63.0 60.4 73.65 48.68 58.05
MOAEA 66.2 63.3 74.48 53.70 61.89
MOAEB 66.0 62.7 73.65 52.94 61.14
Majority V oting - 61.5 73.92 50.59 59.66
Unweighted Averaging 65.7 56.9 77.46 49.71 60.16
Stacking LR 64.0 61.7 75.20 50.19 59.82
Stacking SV C - 61.7 76.41 49.95 60.06

ously applied, MOAEA surpasses the best decision fusion
method, with 2.9% relative improvement in F1-score. MOAE
provides an edge over other multimodal fusion methods.

C. Weight Analysis

We plot weights of MOAEA along with three correspond-
ing movie shot sequences in figure 2. All three shot sequences
include a scene boundary denoted by a yellow line. The first
two shots of the first row are the end of a conversation scene.
By the end of the speech, the latter scene then begins a
narration with background music. The sequence of shots in the
narration alters frequently between various shooting location.
Under this circumstance, the acoustic transition points appar-
ently support the decision of scene boundary where the visual
content is likely to create a false boundary. MOAEA assigned
more weight to the acoustic experts to identify a scene
boundary between these scenes. A similar weight distribution
is observed at the next boundary, where the first and the second
shot of the narration scene are in different locations. The
second row depicts a different situation. The first two shots of
the latter scene is used to establish the location of the scene,
showing the exterior of a boat near the dock. These two shots
are visually different from the following shots that show the
interior of the boat. More weight is assigned to the acoustic
experts because of the obvious visual variations. The third row
is an example of visual variation caused by a drastic change
in shot angle and shot type. This variation forced MOAEA

to assign over 50% of total weight to acoustic experts even
though these shots are all filmed in the same room.

V. CONCLUSION

In this work, we computed various acoustic semantic repre-
sentations to complement the visual content modeling to im-
prove the scene segmentation task. Moreover, we extended the
multimodal hierarchical scene segmentation framework using
the mixture-of-experts approach. The comparison experiments
demonstrated state-of-the-art performances using our proposed
MOAE framework. The expert weight analyses also visualized
the impact of different aspects of the modalities on the decision
of a boundary. To the best of our knowledge, this is one of the
first works that comprehensively integrate information from
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Fig. 2. Mixer weights and three corresponding shot sequences in the movie. A yellow line represents a scene boundary and the weights assigned to the
experts for each boundary are shown between shots. These three sequences illustrate how the mixer assigns more weight to the acoustic experts when visual
attributes vary dramatically, causing confusion when we rely on visual features.

audio tracks that also demonstrate a significant improvement
beyond predominantly visual-based approaches in the task of
scene segmentation for movies. We hope that this study can
enable high-quality scene segmentation by including more
semantics details, and therefore accelerate various machine
learning applications in the multimedia domain.

REFERENCES

[1] Bhavesh Patel and B Meshram, “Content based video retrieval systems,”
International Journal of UbiComp, vol. 3, 05 2012.

[2] Aasif Ansari and Muzammil H Mohammed, “Content based video
retrieval systems-methods, techniques, trends and challenges,” Inter-
national Journal of Computer Applications, vol. 112, no. 7, 2015.

[3] Ephraim Katz, Ephraim Katz’s The Film Encyclopedia, Thomas Y.
Crowell, 1979.

[4] James E Cutting, “Event segmentation and seven types of narrative
discontinuity in popular movies,” Acta psychologica, vol. 149, pp. 69–
77, 2014.

[5] Lei Chen and M Tamer Ozsu, “Rule-based scene extraction from video,”
in Proceedings. International Conference on Image Processing. IEEE,
2002, vol. 2, pp. II–II.

[6] Vasileios T Chasanis, Aristidis C Likas, and Nikolaos P Galatsanos,
“Scene detection in videos using shot clustering and sequence align-
ment,” IEEE transactions on multimedia, vol. 11, no. 1, pp. 89–100,
2008.

[7] Rameswar Panda, Sanjay K Kuanar, and Ananda S Chowdhury,
“Nyström approximated temporally constrained multisimilarity spectral
clustering approach for movie scene detection,” IEEE transactions on
cybernetics, vol. 48, no. 3, pp. 836–847, 2017.

[8] Daniel Rotman, Dror Porat, Gal Ashour, and Udi Barzelay, “Optimally
grouped deep features using normalized cost for video scene detection,”
in Proceedings of the 2018 ACM on International Conference on
Multimedia Retrieval, 2018, pp. 187–195.

[9] Panagiotis Sidiropoulos, Vasileios Mezaris, Ioannis Kompatsiaris, Hugo
Meinedo, Miguel Bugalho, and Isabel Trancoso, “Temporal video
segmentation to scenes using high-level audiovisual features,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 21, no.
8, pp. 1163–1177, 2011.

[10] Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara, “A deep
siamese network for scene detection in broadcast videos,” in Proceedings
of the 23rd ACM international conference on Multimedia, 2015, pp.
1199–1202.

[11] Naoki Nitanda, Miki Haseyama, and Hideo Kitajima, “Audio signal
segmentation and classification for scene-cut detection,” in 2005 IEEE
International Symposium on Circuits and Systems. IEEE, 2005, pp.
4030–4033.

[12] Seungmin Rho and Eenjun Hwang, “Video scene determination using
audiovisual data analysis,” in 24th International Conference on Dis-
tributed Computing Systems Workshops, 2004. Proceedings. IEEE, 2004,
pp. 124–129.

[13] Anyi Rao, Linning Xu, Yu Xiong, Guodong Xu, Qingqiu Huang, Bolei
Zhou, and Dahua Lin, “A local-to-global approach to multi-modal movie
scene segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 10146–10155.

[14] Zexu Pan, Zhaojie Luo, Jichen Yang, and Haizhou Li, “Multi-Modal
Attention for Speech Emotion Recognition,” in Proc. Interspeech 2020,
2020, pp. 364–368.

[15] Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and Dahua Lin,
“Movienet: A holistic dataset for movie understanding,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2020.

[16] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke,
Aren Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A
Saurous, Bryan Seybold, et al., “Cnn architectures for large-scale audio
classification,” in 2017 ieee international conference on acoustics,
speech and signal processing (icassp). IEEE, 2017, pp. 131–135.

[17] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang,
and Mark D Plumbley, “Panns: Large-scale pretrained audio neural
networks for audio pattern recognition,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 28, pp. 2880–2894, 2020.

[18] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen,
Wade Lawrence, R Channing Moore, Manoj Plakal, and Marvin Ritter,
“Audio set: An ontology and human-labeled dataset for audio events,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2017, pp. 776–780.

[19] Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello,
“Look, listen, and learn more: Design choices for deep audio em-
beddings,” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
3852–3856.

[20] Relja Arandjelovic and Andrew Zisserman, “Look, listen and learn,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 609–617.

[21] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt, Andreas F.
Ehmann, and Xavier Serra, “End-to-end learning for music audio tagging
at scale,” in 19th International Society for Music Information Retrieval
Conference (ISMIR2018), 2018.

[22] Jordi Pons and Xavier Serra, “musicnn: pre-trained convolutional neural
networks for music audio tagging,” in Late-breaking/demo session in
20th International Society for Music Information Retrieval Conference
(LBD-ISMIR2019), 2019.

[23] Chao Li, Xiaokong Ma, Bing Jiang, Xiangang Li, Xuewei Zhang, Xiao
Liu, Ying Cao, Ajay Kannan, and Zhenyao Zhu, “Deep speaker:
an end-to-end neural speaker embedding system,” arXiv preprint
arXiv:1705.02304, 2017.

[24] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean, “Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer,” in 5th
International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. 2017,
OpenReview.net.

[25] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever, “Learning
factored representations in a deep mixture of experts,” in 2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Workshop Track Proceedings, Yoshua
Bengio and Yann LeCun, Eds., 2014.

10


