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Abstract

In human–human interactions, entrainment  is a naturally occurring phenomenon that happens when interlocutors mutually adapt
their behaviors through the course of an interaction. This mutual behavioral dependency has been at the center of psychological
studies of human communication for decades. Quantitative descriptors of the degree of entrainment can provide psychologists an
objective method to advance studies of human communication including in mental health domains. However, the subtle nature
of the entrainment phenomenon makes it challenging for computing such an effect based on just human annotations. In this
paper, we propose an unsupervised signal-derived approach within a principal component analysis framework for quantifying
one aspect of entrainment in communication, namely, vocal  entrainment. The proposed approach to quantify the degree of vocal
entrainment involves measuring the similarity of specific vocal characteristics between the interlocutors in a dialog. These quantitative
descriptors were analyzed using two psychology-inspired hypothesis tests to not only establish that these signal-derived measures
carry meaningful information in interpersonal communication but also offer statistical evidence into aspects of behavioral dependency
and associated affective states in marital conflictual interactions. Finally, affect recognition experiments were performed with the
proposed vocal entrainment descriptors as features using a large database of real distressed married couples’ interactions. An
accuracy of 62.56% in differentiating between positive and negative affect was obtained using these entrainment measures with
Factorial Hidden Markov Models lending further support that entrainment is an active component underlying affective processes in
interactions.
© 2012 Elsevier Ltd. All rights reserved.
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.  Introduction

Various psychological studies of interpersonal communication (e.g., Andersen and Andersen, 1984; Watt and
anLearn, 1996; Burgoon et al., 1995) conceptualize dyadic human–human interaction as an adaptive and inter-
ctive process. This process occurs spontaneously in the progression of human interactions serving multiple purposes
ncluding achieving efficiency, communicating interest and involvement in the interaction, and increasing mutual
nderstanding through behavioral and affective mechanisms. This mutual coordination of behaviors both in timing
nd expressive forms between interlocutors is a phenomenon variously referred to as entrainment, accommodation, or
nteraction synchrony. A systematic and quantitative framework for assessing and tracking this notion of behavioral
ependency between interlocutors in a conversation is essential in characterizing the overall quality and dynamic flow
f human communication in general.

Moreover, numerous psychological theories of intimate relationships, such as couples’ interactions, consider behav-
oral dependence to be a defining and core element of the theory. Support for this theoretical notion comes from a
ery large body of psychological and communication studies linking various forms of behaviorally dependent cou-
les’ interaction to individual well-being and relationship outcomes, e.g., divorce and domestic violence (Murphy and
’Farrell, 1997; Johnson and Jacob, 2000; Romano et al., 1992; Cordova et al., 1994; Jacobson et al., 1994). The
uantitative study of the entrainment phenomenon, thus, becomes especially important because of not only its crucial
ole in analyzing human communication in general but also its utility in providing insights into the study of various
ental distress and well-being conditions. In this paper, we consider the relation between the entrainment measured

y our proposed computational framework and affective processes in distressed couple interactions.
The entrainment phenomenon has been extensively studied for the past twenty years in the psychology literature.

hile this body of work has offered many insights into human interaction dynamics, methods for assessing and
uantifying the degree of behavioral entrainment have received little attention. Except for a few notable studies
Gottman et al., 2002; Boker and Laurenceau, 2006) in modeling couples’ interactions, the computational techniques
or quantifying entrainment have been largely based on log-linear models of highly reductionistic, categorical manual
bservation coding of behaviors. The manual observation coding of behaviors is often time-consuming and error-prone
ue to the subjective nature of the coding process (Kerig and Baucom, 2004).

Technological advances in capturing human behaviors with increasing ecological validity and mathematical capa-
ilities to quantify interdependent processes have enabled new computational approaches mitigating some of the issues
nd limitations in the subjective observational coding process. Advances in speech processing and recognition as well
s in image processing and computer vision have allowed engineers to understand aspects of not only intent but also
uman emotions and social signals in verbal and non-verbal form with objective signal processing methodologies.
otably, there has been tremendous progress in social signal processing (SSP) (Vinciarelli et al., 2009) wherein sig-
al processing and machine learning methodologies have been developed and applied to understand complex human
ocial behaviors, such as mutual gaze, head nods, and affective dynamics, in interpersonal interactions with potential
pplications geared toward natural human–machine interfaces. All these developments have enabled and facilitated the
merging field of behavioral signal processing (BSP) (Black et al., 2010; Lee et al., 2010; Rozgic et al., 2010). BSP
equires acquiring behavioral data in an ecologically valid manner across laboratories to real-world settings, extracting
nd analyzing behavioral cues from measured data streams, developing models offering predictive and decision-making
upport to the appropriate (human) experts, and aiding in the solution of real world problems. One broad domain of BSP
pplication relates to research and practice in mental health and well-being, e.g., married couples’ therapy, addiction
ehaviors, depression, children with autism spectrum disorders. This paper offers an example of BSP in analyzing
arital couple therapy data and providing feedbacks to human experts in family studies. Several previous works have

lso demonstrated the effectiveness of BSP in modeling distressed couples’ behaviors with various types of automat-
cally derived signals (Rozgić et al., 2011; Black et al., 2011, in press; Gibson et al., 2011; Katsamanis et al., 2011b;
eorgiou et al., 2011).
In this work, our aim is to introduce a novel computational framework to quantify the degree of one specific channel of

ntrainment, vocal  entrainment, using acoustic signals. The subtle nature of the vocal entrainment phenomenon makes

ts annotation difficult for human experts, which in turn hinders its computational measurement based on conventional
upervised machine learning techniques. Relatively few studies in engineering have attempted to capture and quantify
he degree of these subtle dependent behaviors through computing measures directly on the automatically extracted
bservable cues. Some key related studies focusing on quantifying entrainment in various communicative channels
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include the following: the investigation of mutual entrainment in vocal activity rhymes (McGarva and Warner, 2003);
the analysis of high frequency word usage entrainment (Nenkova et al., 2008); the computation of entrainment of
body movements (Richardson et al., 2005); the demonstration of phonetic convergence in conversation settings (Pardo,
2006); the existence of linguistic style similarity (Niederhoffer and Pennebaker, 2002).

The existence of vocal entrainment is well-established in psychology (Gregory et al., 1993, 1997; Gregory and
Webster, 1996; Gregory and Hoyt, 1982; Chartrand and Bargh, 1999; Bernieri et al., 1988) and also has been demon-
strated in engineering works (Levitan and Hirschberg, 2011; Lee et al., 2010). The schemes for quantifying the degree
of prosodic entrainment for most of the studies rely on classical synchrony measures (e.g., Pearson correlation) on
functionals of separate streams of acoustic features (e.g., mean pitch value per turn), computed across a speaker turn
change. This approach of using classical synchrony measures has been widely adopted across a variety of research
domains, e.g., econometrics, neuroscience, and physical coupled system studies. Through these various research works,
there is a long list of classical synchrony measures and their variants available to quantify the interdependency between
two simultaneously measured time series. An excellent review article by Dauwels et al., summarizes these measures
for quantifying synchrony in electroencephalography (EEG) time series signals (Dauwels et al., 2010). These classical
synchrony measures can be roughly categorized into the following types: linear correlation, nonlinear correlation,
phase coherence, state-based synchrony, and information theoretic measures; they are all widely used and varyingly
effective depending on the domain of studies.

However, there exist limitations in applying such a quantification approach to the study of vocal entrainment –
mainly due to the complex nature of human–human conversations. Human conversation has a turn-taking structure,
which challenges the requirement of simultaneously measured time series of certain similar behaviors, notably of
vocal activity (visual behavior can co-occur, and be measured, although often one speaker tends to be holding the
floor at any given time). Furthermore, the analysis window length for each time series, e.g., length of each speaking
turn, varies across time (progressing through the dialog) and across variables (interlocutors in the dialog). Empirical
evidence from psychological studies has also shown that multiple acoustic feature streams, often measured with
classical synchrony measures, carry information about the entrainment process. These classical synchrony measures
are often not directly applicable on multivariate set of acoustic features, e.g., those based on pitch, energy, and speech
rate.

The proposed computational framework is a bottom-up approach utilizing automatically derived acoustic features
to compute vocal entrainment levels. The formulation can be intuitively thought of as “computing how much people
speak/sound like each other as they engage in conversation” captured by acoustic cues. We make a distinction between
this intuition and the notion of “similarity in word usage” which is a different type of entrainment (i.e., lexical entrain-
ment). Instead of computing synchrony measures on separate time series of acoustic features between interlocutors,
we quantify the degree of vocal entrainment as the similarity between interlocutors’ vocal characteristic representation
spaces. The vocal characteristic space is constructed based on a set of parametrized raw acoustic feature streams using
principal component analysis (PCA).

We first introduced this notion of quantifying vocal entrainment in the framework of PCA with a single metric in
our previous work (Lee et al., 2011b). There, we focused only on the directionality aspect of the entrainment process,
e.g., how much speaker A in a dyad entrains toward speaker B and vice versa. The measure that we devised was
computed based on the preserved variance as we project one set of acoustic parameters onto the PCA space of another.
The derived measures were useful when applied to affect state recognition (Lee et al., 2011a,b). The method, however,
suffers from robustness issues when the lengths of turns are significantly different; projecting a much longer-length
turn onto a PCA space of shorter-length turns would result in a bias of “preserving more variance” as longer-length
turns inherently tend to have larger variations.

We have extended our previous work in two folds by (1) introducing the use of symmetric similarity measures and
(2) improving the similarity metric computational framework. The symmetric similarity values are computed based
on angles between principal components (Krzanowski, 1979; Johnannesmeyer, 1999) as a direct measure of similarity
between two separate PCA spaces. This process results in values describing similarity that are symmetric, meaning
that they have the same value for each interlocutor.
We propose to measure the degree of the directional entrainment by retaining the idea of projecting one interlocutor’s
acoustic parameters in the PCA space of the other interlocutor. Then, instead of measuring the variance preserved,
we compute Kullback–Leibler divergence as a metric of similarity, inspired by the work on quantifying similarity
between datasets (Otey and Parthasarathy, 2005). Our proposed entrainment measures can be categorized into two
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ypes: symmetric and directional entrainment measures. The resulting measures from the proposed scheme consist of
ight vocal entrainment values in total.

We analyze these entrainment measures on a database, referred to here as the Couple Therapy corpus, of real
istressed married couples going through problem-solving spoken interactions as part of their participation in a ran-
omized clinical trial of couple therapy. The corpus not only provides rich data for human communication studies but
lso represents an important realm for potentially beneficial contributions by behavioral signal processing. A recent
eview of more than three decades of marital interaction research indicates the importance of behavioral dependency
or marriages (Eldridge and Baucom, 2010) and the proposed measures can provide a means for quantifying such
onstructs.

In this work, we carry out the analyses of the proposed computational measures of entrainment in three steps:

i. Verification: verifying that the proposed signal-derived measures capture psychologically valid notions of entrain-
ment.

ii. Analysis: analyzing the relationship between the vocal entrainment phenomenon and the interacting spouses’
affective states.

ii. Application: applying vocal entrainment measures as features in an affective state recognition task.

The analysis carried out in the verification step is important in order to verify that such a signal-derived ana-
ytic is appropriate for characterizing and capturing the notion of inherent behavioral dependencies conceptualized
n psychological studies of interpersonal interactions. The assumption is that if there exists a natural cohesiveness
n human–human conversations, the proposed entrainment measures should be expected to result in higher values
hen computed in a dialog between an in-conversation dyad compared to randomly generated dialogs between not-

n-conversation dyads. The results of this evaluation indicate that the proposed measures are indeed higher in real
onversation compared to artificial conversations, making their use a viable approach to quantitatively describe the
henomenon of vocal entrainment.

The second evaluation focuses on exploring the usefulness of this computational tool in providing psychologically
ignificant insights about the relationship between affective states and the varying degree of vocal entrainment for
he spouses in the couples’ interactions. Results from our analysis indicate that most of the vocal entrainment values
how significantly higher value in interactions where the spouse was behaviorally coded as having high positive affect
ompared to high negative affect. This analysis provides some of the first empirical evidence that vocal entrainment
ffers an indication of a positive interacting process during couple interactions. It is also consistent with other psycho-
ogical studies documenting the positive effects of entrainment in other interaction contexts (Kimura and Daibo, 2006;
erhofstadt et al., 2008).

The third analysis is to demonstrate that these measures can also be utilized as features in human behavior classifica-
ion tasks. Affect recognition of the spouse (positive affect vs. negative affect) is used as an exemplary application with
he proposed analytics as features. In our previous work (Lee et al., 2011a), we performed the same affect recognition
ask with the same database using a multiple instance learning framework. We utilize a temporal modeling technique
Factorial Hidden Markov Model) in this work for this purpose, and we obtain a classification accuracy of 62.86%,
hich is a 8.93% absolute (16.56% relative) improvement over our previous result. This result lends further support to

he observation that the behavioral dependencies underlying affective processes are reflected in the proposed measures.
t should be noted that this experiment is not the primary focus of the paper but is presented to show the potential of
he entrainment measures to reflect behavioral dependencies in affective dynamics.

The rest of the paper is organized as follows: Section 2 describes the Couples Therapy database; Section 3 describes
ur PCA-based vocal entrainment quantification scheme; Section 4 presents the two approaches in analyzing the signal-
erived entrainment measures; Section 5 describes the affective state classification framework and experimental results;
nd Section 6 presents conclusions and ideas for future works.
.  The  Couple  Therapy  corpus

The Couple Therapy corpus originated from a collaborative project between the psychology departments of the
niversity of California, Los Angeles and the University of Washington (Christensen et al., 2004). This collaborative
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Table 1
The complete list of 32 behavioral codes: 19 from SSIRS (Jones and Christensen, 1998) and 13 from CIRS (Heavey et al., 2002).

Social Support Interaction Rating System (SSIRS) Couples Interaction Rating System (CIRS)

Global positive affect, global negative affect, use of humor,
sadness, anger/frustration, belligerence/domineering,
contempt/disgust, tension/anxiety, defensiveness, affection,
satisfaction, solicits partner’s suggestions, instrumental support
offered, emotional support offered, submissive or dominant, topic
is a relationship issue, topic is a personal issue, discussion about
husband, discussion about wife

Acceptance of other, blame, responsibility for self, solicits partner’s
perspective, states external origins, discussion, clearly defines problem,
offers solutions, negotiates, makes agreements, pressures for change,
withdraws, avoidance
project resulted in the largest longitudinal, randomized, behaviorally based couple therapy clinical trial to date. A
total of 134 seriously and chronically distressed couples participated in the study, and they received up to 26 couple
therapy sessions over the course of a year. As part of their participation in the study, each couple engaged in problem-
solving interactions where one of the spouses picked one distinct topic related to a serious problem in their relationship
to discuss, and they tried to resolve it. Each topic of a problem-solving interaction lasted about 10 min. Each 10 min
interaction was audio–video recorded for observation analysis, and each spouse was coded separately by trained human
annotators.

The Couple Therapy corpus consists of audio–video recordings, manual transcriptions, and behavioral codings
of each couples’ problem-solving interactions. The interactions that we consider were recorded at three differ-
ent points in time: pre-therapy, the 26-week assessment, and the two-year post-therapy assessment. The recorded
audio–video data includes a split-screen video and a single channel far-field audio recorded from the video camera
microphone. The recording conditions, e.g., microphone and camera positions, background noise level, and light-
ing conditions, varied from session to session. Manual word transcriptions were carried out to aid the analysis of
couples’ language use. The resulting word-level transcriptions were chronological, and the speaker identity was
explicitly labeled in the transcript. The transcriptions, however, did not have explicit timing information on speakers’
turn-taking.

For each interaction session, multiple evaluators (ranging from 2 to 12 evaluators) rated each spouse with 32 different
behavioral codes based on two established coding manuals, Social Support Interaction Rating System (SSIRS) (Jones
and Christensen, 1998) and Couples Interaction Rating System (CIRS) (Heavey et al., 2002). The SSIRS consists of
19 codes assessing the emotional content and the topic of the conversations corresponding to four different categories:
affect, dominance/submission, features of the interaction, and topic definition. The CIRS consists of 13 codes which
were specifically designed for coding problem-solving discussions. Table 1 lists the complete list of the 32 codes for
SSIRS and CIRS. Each code was evaluated on an integer scale from 1 (none/not at all) to 9 (a lot). All evaluators
went through a training process to standardize the coding process. They were instructed to make their judgments after
observing the whole interaction session. For each problem-solving interaction, each spouse was rated with one global
value for each of the 32 behavioral codes. Each spouse selected a topic that he/she wanted to discuss in the problem-
solving interactions, and then the other spouse selected a different topic for the discussion in another interaction
session. The original study aimed at recording 804 sessions (134 couples × 3 points in time ×  2 topics per couple).
After eliminating sessions where either codes were missing or spouses withdrew from the study, the remaining 569
problem-solving interactions constitute the Couple Therapy corpus, totaling 95.8 h of data with 117 unique couples.

While it is desirable to utilize the entire corpus, not all of the sessions in the Couple Therapy corpus are suitable
for automatic analysis due to the varying noise conditions across different sessions resulting in unreliable estimates of
acoustic features. We had to identify a subset of sessions out of the original 569 sessions, denoted here as Datasetqual,
that were deemed to be of suitable audio quality for the analyses considered. The subset consists of 372 sessions in
total (the detailed selection criterion and preprocessing steps are described in Section 2.1). The dataset, Datasetqual, of
372 sessions was used in verifying the validity of the proposed vocal entrainment measures (Section 4.1). To carry out
the analysis of unambiguously marked affective states of the spouses (Sections 4.2 and 5), we selected a subset out of

the 372 sessions, denoted here as Datasetemo, based on the extremes of the “Global Positive” and “Global Negative”
ratings of each spouse. Details of this selection are described in Section 2.2.
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.1.  Datasetqual:  preprocessing

The first pre-processing step that we carried out was to identify a subset of the 569 sessions with sufficient quality
hat could be robustly analyzed with automatically derived acoustic features. This was done with two criteria: average
ignal-to-noise ratio (SNR) estimation based on voice activity detection (VAD) (Ghosh et al., 2010) and speech-text
lignment algorithm using SailAlign (Katsamanis et al., 2011a). VAD was designed to detect non-speech segments
arger than 300 ms. SNR was then estimated as follows:

SNR (dB) =  10 log10
(1/|i  ∈  S|)∑i∈SA2

i

(1/|i  /∈  S|)∑i/∈SA2
i

,  (1)

here {Ai}  ∈ S  is the set of amplitudes resulting from the VAD-detected speech regions and {Ai} /∈  S  is the set of
mplitude outputs in the non-speech regions, again based on the VAD. We empirically chose 5 dB SNR as the cutoff for
etermining which sessions to include for automatic analysis. This procedure and the chosen SNR criterion eliminated
54 sessions from the current study. This resulted in a total of 415 sessions out of the 569 sessions based on SNR
riterion. As is common in dyadic conversation studies, the spoken analysis unit adopted is the speaking turn. The
ouple Therapy corpus does not contain explicit timing of each speaking turn. Instead of manually segmenting the

peaking turn for each spouse for all sessions, we used a “hybrid” manual/automatic speaker segmentation, given the
vailability of manual word-level transcriptions. We implemented a recursive Automatic Speech Recognition (ASR)-
ased procedure to align the transcription with the audio data using an open source tool, SailAlign.1 As a result of
his speech-text alignment, we obtained timing information on each alignment along with approximate speaking turn
egmentation. We used these turn estimates (referred to as speaking  turns, or just turns  in the rest of the paper) as
n approximation of the actual speaking turns for each spouse in each interaction session. Due to the nature of the
lignment process and the non-ideal nature of audio quality, not every word in the transcription could be reliably
ligned. We further eliminated sessions where the algorithm failed to align 55% or more of the words in the transcripts.
he 55% cut-off eliminated another 43 sessions out of 415 sessions. The percentage was chosen as a trade-off between

etaining a greater number of sessions for the analyses and eliminating those sessions that were of poor audio quality
nd had poor speaker segmentation results. This resulted in a final dataset, Datasetqual, of 372 interaction sessions for
he current study totaling 62.8 h of data with 104 unique couples; the same dataset was used in past studies on the same
orpus (Black et al., in press).

.2.  Datasetemo: positive  vs.  negative  affect

There are numerous psychology studies (Jacobson et al., 1994; Verhofstadt et al., 2008; Gottman, 1993) describing
nd indicating various degrees of relations between affective states and behavioral dependencies in couples’ interactions.
n this work, we investigate the relation between the proposed measures, that reflect a type of behavior dependency
vocal entrainment), and the affective states. In particular, we study the relationship between spouses’ affective states
nd their associated degree of vocal entrainment. For this purpose, we defined two emotional classes, positive  and
egative, of each spouse, with respect to the rating of the two behavioral codes, namely “Global Positive” and “Global
egative”, derived from the SSIRS coding manuals. The mean inter-evaluator agreements, computed using intraclass

orrelation (Shrout and Fleiss, 1979), of “Global Positive” and “Global Negative” are 0.831 and 0.867 respectively,
ndicating a reasonably high agreement between evaluators for these two behavioral codes. The following are the
oding instructions quoted directly from the SSIRS manual for both codes:

“[Global Positive  An overall rating of the positive affect the target spouse showed during the interaction. Examples
of positive behavior include overt expressions of warmth, support, acceptance, affection, positive negotiation, and
compromise. Positivity can also be expressed through facial and bodily expressions, such as smiling and looking

happy, talking easily, looking comfortable and relaxed, and showing interest in the conversation.]”
“[Global Negative  An overall rating of the negative affect the target spouse shows during the interaction. Examples
of negative behavior include overt expressions of rejection, defensiveness, blaming, and anger. It can also include

1 http://sail.usc.edu/software/SailAlign/.

http://sail.usc.edu/software/SailAlign/
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Fig. 1. ‘Global Negative Rating’ for wife in the Couple Therapy corpus in a descending order with the corresponding “Global Positive Affect”
rating in the same session.

facial and bodily expressions of negativity such as scowling, crying, crossing arms, turning away from the spouse,
or showing a lack of interest in the conversation. Also factor in degree of negativity based on severity (e.g., a higher
score for contempt than apathy).]”

Since the coding manual for the two behavioral codes instructs annotators to treat each code as independent of each
other, a high rating of “Global Negative” does not guarantee a low rating of “Global Positive” (see Fig. 1). In order to
mitigate the ambiguity in defining positive  affect and negative  affect, the specific subset of database that we used in this
work comes from the extreme ratings of these affect codings. We chose the ratings for which any one of the spouses was
rated in the top 20% for either of the codes (high rating of global positive and high rating of global negative) to serve
as the prototypical (unambiguous) positive  affect and negative  affect of a spouse; this subset of data is denoted here as
Datasetemo. The 20% threshold was inspired from previous behavioral studies (Jurafsky et al., 2009; Ranganath et al.,
2009) and was also used in our previous research work as a starting point to study the extreme behaviors in couples’
interactions (Black et al., in press).

The spouses that we defined as having positive  affect state had a mean rating score of 7.00, on the “Global Positive”,
which was much higher than its mean rating score, 2.15, on the “Global Negative”. The spouses that we defined as
having negative  affect state had a mean rating of 6.25 on the “Global Negative” and a much lower rating, 2.08, on
the “Global Positive”. None of the spouses in this dataset had a mean evaluator score of both “Global Positive” and
“Global Negative” to appear in the top 20% (see Fig. 2). This dataset, Datasetemo, was used to perform our analysis
in Section 4.2 and affect recognition in Section 5. The resulting dataset consists of interaction sessions from 81 unique

couples with 280 ratings: 140 high-positive ratings (70 of husbands, 70 of wives) and 140 high-negative ratings (70 of
husbands, 70 of wives).

Fig. 2. Datasetemo: bar plot of the original ratings of “Global Positive Affect” and “Global Negative Affect” codes for the sessions that we consider
belonging in the positive affect and negative affect categories respectively.
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.3.  Audio  feature  extraction

After the pre-processing steps, we extracted various speech-related features from the 372 sessions detailed in our
revious work (Black et al., in press). We utilized the following subset of the acoustic features, namely mel-frequency
epstrum coefficients (MFCCs), pitch (f0), intensity (int), and speech rate, in this work. The 15 MFCCs were computed
sing 25 ms windows and 10 ms shift with the OpenSMILE toolbox (Eyben et al., 2010). MFCCs were normalized
sing cepstral mean subtraction as follows:

MFCCn[i] =  MFCC[i] −  μMFCC[i],  i  =  0,  .  . .  ,  14,  (2)

here the μMFCC[i] values correspond to the mean MFCC of the ith coefficient of the speaker across the whole session.
Fundamental frequency and intensity were both extracted using an autocorrelation-based method as implemented

n the Praat toolbox (Boersma, 2001). Intensity frame values at each frame, n, were normalized in the following way:

intn = int

μint
, (3)

here the μint values correspond to the mean intensity of speech during the active speaker regions, computed across
he whole session.

We further carried out several postprocessing procedures to ensure that the raw pitch extraction was reasonably
ccurate. We attempted to mitigate pitch doubling and halving by passing the raw pitch signals through an algorithm
etecting large differences in f0 values in consecutive frames. The pitch values were forced to be zeros at regions where
he VAD algorithm detects a non-speech portion. We interpolated over unvoiced regions with duration less than 300 ms
sing piecewise-cubic Hermite interpolation. Finally, a median filter of length five was applied to eliminate spurious
oise. f0 values were normalized as follows:

f 0log
=  log2

(
f0

μf0

)
(4)

here μf0 values were computed across the whole session using the speaker segmentation results.
Finally, we computed the mean syllabic speaking rate for each aligned word directly from the automatic word

lignment results with the help of a syllabified pronunciation dictionary.2

.  Signal-derived  vocal  entrainment  quantification

Our proposed signal-derived vocal entrainment quantification is based on the core idea of computing similarity
easures between the vocal characteristic spaces (represented by the corresponding PCA spaces) of interlocutors. The

ramework computes vocal entrainment values at the level of speaking turns for each interlocutor in the interaction.
t involves two steps. The first is to obtain an adequate set of acoustic feature parameters to represent the speaking
haracteristics. The second is to represent these acoustic parameters in the PCA space based on which we compute
arious similarity measures. In this section, we will first describe four general similarity measures, given two PCA
epresentations on two sets of time series observations. Then we will discuss the parametrization of the acoustic features
o serve as descriptors of vocal characteristics, and, lastly, we will describe how to apply the method to extract a total
f eight features indicating the degree of vocal entrainment for each spouse in couples’ interactions.

.1.  PCA-based  similarity  measures

Principal component analysis (PCA) is a well-known statistical method for analyzing multivariate time series.

CA performs an orthogonal transformation of a set of observation variables onto a set of uncorrelated variables
alled principal components. The first component accounts for the maximum variance of the observed data, and each

2 http://www.haskins.yale.edu/tada download/index.php.

http://www.haskins.yale.edu/tada_download/index.php
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succeeding component explains the highest possible variance with the constraint that it be orthogonal to the preceding
component. The mathematical formulation of PCA follows:

YT =  XTW  =  �VT (5)

where X  is the zero-mean data matrix, W  is the matrix of eigenvectors of XXT , Y  is the representation of X after PCA,
V is the matrix of eigenvectors of XT X, and �  is a diagonal matrix containing values of variance associated with each
principal component.

Assume we are given two sets of multivariate time series observations (e.g., from two individuals in a dyadic
interaction), X1 and X2, each comprising the same n  time series signals but that can be of different lengths. We can
then respectively compute the two sets of principal components, W1 and W2, and the two associated diagonal variance
matrices, �1 and �2. We propose two types of similarity measures based on these representations:

• Symmetric: similarity between the two PCA representations, W1 and W2.
• Directional: similarity when representing one set of observations, e.g., X1, in the other PCA space, e.g., W2.

3.1.1. Symmetric  similarity  measures
From (5), PCA is essentially a process of rotating the original data matrix to a new coordinate system with the

optimization criterion of maximizing explained variances. The general procedure for computing symmetric similarity
measures with PCA is listed below:

1. Obtain principal components for each time series separately:

Y1 =  X1
TW1

Y2 =  X2
TW2

.

2. Retain k  components of each time series,

k  =  max(k1, k2)

k1 < n, k2 < n, each explaining a fixed fraction (95% here) of variance.
3. Compute measures of similarity based on angles between the k reduced set of components (Eqs. (6) and (7)).

The first similarity value is proposed in the work of Krzanowski (1979):

ssimu(X1,  X2) =  trace(WT
1LW2LWT

2LW1L) =
k∑

i=1

k∑
j=1

cos2(θij),  (6)

where θij is the angle between the ith principal component of X1 and jth principal component of X2. W1L and W2L

contain the reduced number of principal components, i.e., k  components. Consequently, ssimu(X1, X2) ranges between
1 and k.

Another similarity measure proposed by Johnannesmeyer (1999) is an extension to the previous measure by weight-
ing the angles with their corresponding variance. The measure in (6) can be thought of as an unweighted symmetric
measure and the following is its weighted symmetric counterpart:

ssimw(X1,  X2) =
∑k

i=1
∑k

j=1(λX1,i
λX2,j

cos2(θij))∑k
λX1,i

λX2,i

, (7)

i=1

where λX1,i
,  λX2,j

are the diagonal elements of �1,  �2.
The interpretation of these two measures, namely ssimu and ssimw, is based on the assumption that if two sets of

observations are similar to each other, the angles between their corresponding principal components will be closer to
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ero; hence, the corresponding sum of cos 2(θij), i  = 1, . .  ., k, will be larger. Note that these two measures are symmetric
i.e., ssim(X1, X2) = ssim(X2, X1)).

.1.2. Directional  similarity  measures
The entrainment  process inherently carries notions of directionality – a given process can be entraining toward  or

etting entrained from  another interacting process or reflect a combination of both. We propose to quantify each of
hese directionality aspects in the same PCA framework. The idea is to compute similarity when we represent one time
eries in the PCA space of another time series.

For each process, X1, there can be two directions of entrainment. We can compute the degree that it is entraining
oward the other process, X2, denoted as dsimX1

to , as the similarity between X1 and X2 when representing X1 in the
CA space of X2. The degree that it is getting entrained from  another process, dsimX1

fr , is computed as the similarity
etween X1 and X2 when representing X2 in the PCA space of X1.

We first compute four normalized variance vectors {�λn

1to2,
�λn

2, �λn

2to1, �λn

1}. The first two, namely �λn

1to2,
�λn

2, are used
or computing dsimX1

to , while �λn

2to1, �λn

1 are used for computing dsimX1
fr . Computation proceeds as follows:

 Compute �λn

1to2 and �λn

2
1. Project X1 using W2: Y1to2 = X1

T W2.
2. Compute variance vector: �λ1to2 = var(Y1to2).
3. Normalize variance vector: �λn

1to2 = �λ1to2/
∑

iλ1to2,i.
4. Project X2 using W2: Y2 = X2

T W2.
5. Compute variance vector: �λ2 = var(Y2).
6. Normalize variance vector: �λn

2= �λ2/
∑

iλ2,i.
 Compute �λn

2to1 and �λn

1
1. Project X2 using W1: Y2to1 = X2

T W1.
2. Compute variance vector: �λ2to1 = var(Y2to1).
3. Normalize variance vector: �λn

2to1 = �λ2to1/
∑

iλ2to1,i.
4. Project X1 using W1: Y1 = X1

T W1
5. Compute variance vector: �λ1 = var(Y1).
6. Normalize variance vector: �λn

1 = �λ1/
∑

iλ1,i.

Each normalized variance vector characterizes the proportion of the variance explained as the time series projections
epresented in each of the principal components. If we retain all components, they sum to one. We can, then, consider
hem as random variables, V2, V1to2, V1, V2to1, with probability mass distribution based on each element in the
ormalized variance vectors described in the following:

P2 =  P(V2 =  i) =  λn
2,i

P1to2 =  P(V1to2 =  i) =  λn
1to2,i

(8)

P1 =  P(V1 =  i) =  λn
1i

P2to1 =  P(V2to1 =  i) =  λn
2to1,i

(9)

The similarity between variance vectors can be thought of as similarity between two probability distributions. We
mploy the use of symmetric Kullback–Leibler Divergence (KLD) to quantify the difference (hence, the similarity)
etween two probability distributions. If two sets of observations are more similar to each other, the symmetric KLD
ill result in a lower numerical value. This method of quantifying similarity is inspired from the work of Otey and
arthasarathy (2005), but Otey’s method was used on two completely different datasets and does not possess the same
otion as our proposed method, i.e., projection of one time series onto another:

X 1

dsim 1

to =
2

(DKL(P2‖P1to2) +  DKL(P1to2‖P2)) (10)

dsimX1
fr = 1

2
(DKL(P1‖P2to1) +  DKL(P2to1‖P1)) (11)
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DKL(P‖Q) =
∑

i

P(i) log
P(i)

Q(i)
(12)

where dsimX1
to ,  dsimX1

fr represent how much the time series observation, X1, is entraining toward, and getting entrained
from, its interacting process, X2, respectively.

The same procedure needs to be carried out to calculate dsimX2
to and dsimX2

fr to represent how much the time series
observation, X2, is entraining toward, and getting entrained from, its interacting process, i.e., X1. Note that while
this computation would result in the same numerical values for dsimX2

to and dsimX1
fr (also dsimX1

to and dsimX2
fr ), the

underlying interpretation on the directionality of similarity is different. It can be intuitively interpreted as a vector
representation composed of two components: direction and magnitude. While the numerical values, i.e., magnitudes,
are the same, the directions, toward vs. from, of the entrainment process are different.

3.2.  Representative  vocal  features

Vocal entrainment can be intuitively thought of as a phenomenon that represents “how people sound  alike  when
they speak to each other”. In order to quantify the degree of entrainment using the method proposed in Section 3.1, we
need to capture this speaking style with acoustic vocal features. We utilized the four acoustic feature streams, pitch,
intensity, speech rate, and MFCCs, as described in Section 2.3. Prosodic cues, e.g., pitch, intensity and speech rate, can
often be used to describe more explicit speaking style characteristics, e.g., intonation patterns, loudness, and rate of
speaking. MFCCs, on the other hand, capture general spectral properties, which apart from speaker identity (Reynolds,
1994) and phonemic content may also reflect characteristics of the articulation relating to the speaker’s emotional state
(Kwon et al., 2003).

We carried out further parametrization of these features because the extracted 10 ms frame-by-frame values are
too detailed, considering the long-term nature of entrainment. To adequately capture the inherent dynamic variations
of the acoustic features in characterizing speaking styles at the turn level, we performed the parametrization of raw
acoustic features at the word level using statistical functionals and contour fitting methods. Both the contour-based and
statistical functional methods of analysis are common for pitch and intensity. Contour-based methods can capture the
temporal variation while statistical functional methods are used to describe the overall statistical properties. We decided
to parametrize these two feature streams using two methods. We used least-squares to fit a third-order polynomial to
pitch values (Eq. (13)) and a first-order polynomial (Eq. (14)) to intensity values at the word level. This method of
polynomial-based parametrization is the same as in our previous work on analyzing entrainment of individual prosodic
feature streams (Lee et al., 2010):

f 0log
(t) =  α3t

3 +  α2t
2 +  α1t +  α0 (13)

intn(t) =  β1t +  β0 (14)

To further obtain information on the statistical properties, we computed mean (μf0w, μintw) and variance (σ2f0w,
σ2intw) of both pitch and intensity at the word level. We only used α3, α2, α1 for pitch values and β1 for intensity
values to characterize the pattern of pitch and intensity dynamics; intercept terms under the least square contour fitting
method can be thought of as capturing approximately the same information as the mean values. The speech rate feature
is a one-dimensional feature and is based on the average syllable rate. We computed mean and variance for 13 MFCCs,
resulting in 26 MFCC-related parameters per word. The following is the final list of parameters of acoustic features
calculated for each word:

• Pitch parameters (5): [α1, α2,  α3, μf0w, σ2f0w].
• Intensity parameters (3): [β1, μintw, σ2intw].
• Speech rate (1): [sylbμ].
•  MFCCs (26): [μMFCCw[i],  σ2MFCCw[i]] (i  = 0, . . ., 12)
This parametrization resulted in a 35-dimensional vocal characteristic parameter vector derived from raw acoustic
low level descriptors per word. Vocal quality features (e.g., shimmer, jitter, and harmonic-to-noise ratio) also convey
information about vocal characteristics; however, they are computed based on the estimated fundamental frequencies.
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Fig. 3. Example of computing measures quantifying vocal entrainment for turns Ht in a dialog.

ince it is a challenging task to robustly estimate these features in noisy conditions, we did not include them in this
resent work.

.3.  Vocal  entrainment  measures  in  dialogs

Section 3.1 describes a general framework to compute similarity between two multivariate time series using PCA,
nd Section 3.2 describes the acoustic parameters used to represent vocal characteristics. We will describe in this
ection the complete process of quantifying vocal entrainment in human–human conversation.

There are two variants to each of the similarity values proposed in Section 3.1 depending on the manner in which the
CA vocal characteristic space is computed. Since PCA is meant to represent vocal characteristics, we computed PCA
or each speaker both at each speaking turn level (locally  computed  PCA) and at each talker level (globally  computed
CA). The locally computed vocal characteristic space was specified by performing PCA for every single turn, and, if

he turn did not have at least 35 words, it was merged with the nearby turns to ensure a unique representation of PCA
iven that the dimension of acoustic parameters is 35. The globally computed vocal characteristic space was specified
y first aggregating all the turns of a single subject from all the sessions he/she participated in to perform PCA. The
ocally computed PCA captures the moment-by-moment changes in the vocal characteristics of an individual speaker,
nd the globally computed PCA captures an individual’s overall vocal properties. In the case of the locally computed
CA, the computation procedure listed in Section 3.1 can be directly implemented resulting in four vocal entrainment
alues for each speaker at each speaking turn, denoted as dsimLto ,  dsimLfr

,  ssimLu,  ssimLw .
In the case of globally computed PCA, we need to substitute the locally computed turn-level PCA components with

he globally computed subject-level PCA. All of the various projections and variance vector computations remain the
ame using the turn-level  acoustic parameters. Because the projections were done using turn-level acoustic parameters,
he resulting computation could be interpreted as finding similarities of the local representation derived from the global
ocal characteristics between interlocutors. This method gives four additional vocal entrainment values, denoted as
simGto,  dsimGfr

,  ssimGu, ssimGw .
The complete procedure of computing vocal entrainment is illustrated in the example depicted in Fig. 3. For each

peaker (husband, wife) and each of their speaking turns (Ht, Wt) in the Couple Therapy database, we compute
ight similarity measures (Section 3.1) between (Ht and Wt) using z-normalized acoustic parameters (Section 3.2)
s multivariate time series observations with two different ways of computing PCAs as mentioned above. These
alues serve as quantitative descriptors of vocal entrainment for the speaker (husband, wife) at that moment. Table 2
ummarizes the eight entrainment measures with the associated computation methods.

.  Statistical  analysis  of  vocal  entrainment

Section 3 describes a framework to measure vocal entrainment using a completely signal-derived and unsupervised
ethod. Since these measures are computed directly on the raw acoustic cues, we devised a statistical hypothesis test

o investigate whether these signal-derived measures are capable of capturing the existence of the natural cohesiveness

n human-to-human conversations. We set this up as a verification scheme to establish the validity of the proposed
omputational method using the dataset, Datasetqual (Section 2.1). The procedure and the result of this evaluation
cheme are described in Section 4.1.



530 C.-C. Lee et al. / Computer Speech and Language 28 (2014) 518–539

Table 2
Summarization of methods for computing the proposed vocal entrainment measures.

Symmetric Directional PCA type

Unweight Weight Toward From Global Local

ssimGu

√ √
ssimGw

√ √
ssimLu

√ √
ssimLw

√ √

dsimGto

√ √
dsimGfr

√ √
dsimLto

√ √
dsimLfr

√ √
After establishing the validity of the proposed measures in quantifying the subtle phenomenon of vocal entrainment,
we carried out a second analysis that focuses on the relationship between vocal entrainment and the affective states.
This analysis was built upon existing psychology literature describing the positive processes between interacting dyads
under other types of interaction contexts. In this work, we pursue the hypothesis that vocal entrainment reflects behavior
dependencies underlying the affective interactions of severely distressed couples. This analysis was carried out using
the dataset Datasetemo (Section 2.2).

We employed two different statistical testing techniques. We first performed the commonly used Student’s t-Test
given the large number of samples in our database. The histograms show that directional measures are skewed slightly
to the left and symmetric measures are skewed slightly to the right. We took the square root of symmetric measures and
the square of directional measures to transform the histograms to be more normal  before carrying out Student’s t-Test.
Two different tests of normality were carried out on the transformed variables: the Kolmogorov–Smirnov test and the
Shapiro–Wilk normality test. Sometimes, the two tests indicated different results on the normality test for different
entrainment measures. We also include Mann–Whitney’s U-Test, a non-parametric version of Student’s t-Test, in the
result table to offer a more thorough and complete analysis.

4.1.  Analysis  I: verifying  signal-derived  vocal  entrainment  measures

The design of this analysis was based on the psychological knowledge that interlocutors exert mutual influences
(Andersen and Andersen, 1984; Watt and VanLearn, 1996; Burgoon et al., 1995) on each other’s behavior as they
engage in conversations; we refer to this well-known intuitive nature of dialogs in this context as natural  cohesiveness.
To establish the validity of this unsupervised computational framework, we analyzed whether the proposed vocal
entrainment measures capture the existence of this natural cohesiveness between interlocutors. We first computed the
eight vocal entrainment measures for each of the spouses in the dataset, Datasetqual, at every speaking turn in every
interaction session. Then, we compared the mean value of each of the eight measures to the same set of the vocal
entrainment measures computed on “randomly  generated” dialogs. The following one-sided hypothesis testing was
carried out for each individual entrainment measure.

Ho : μentraindialog =  μentrainrand

Ha : μentraindialog >  μentrainrand

The hypothesis states that the measures computed in dialogs where spouses were engaging in real  conversations were
expected to have higher degrees of entrainment compared to measures computed in artificially generated dialogs from
two randomly selected spouses that were not interacting. Note that since measures dsimLto ,  dsimLfr

,  dsimGto, dsimGfr
were computed based on KLD, we expect lower numerical values indicating a higher level of entrainment (similarity).
We followed these steps to generate “artificial dialogs” for the hypothesis testing:
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Table 3
Analyzing vocal entrainment measures for natural cohesiveness (1000 runs): percentage of rejecting Ho at α = 0.05 level.

Measures Student’s t-Test Mann–Whitney’s U-Test

ssimGu 100.00% 100.00%
ssimGw 100.00% 100.00%
ssimLu 100.00% 99.70%
ssimLw 100.00% 100.00%

dsimLto 100.00% 100.00%
dsimLfr

100.00% 100.00%
dsimGto 100.00% 100.00%
dsimGfr

100.00% 100.00%
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Fig. 4. Conceptualization of the dynamic interplay of the directionality of influences in dyadic interactions.

. For a given subject in the Couple Therapy corpus in each of his/her sessions, randomly select another subject from
another session in the database with the constraint that these two subjects are not a couple and this randomly selected
subject is of opposite gender.

. Gather these two “randomly selected” non-interacting spouses’ speaking turns to form an artificial  dialog.

. Compute eight  (Section 3.3) entrainment values for this subject in this artificial dialog.

. Repeat steps 1–3 for every subject in the corpus.

. Repeat step 4 for 1000 times.

The purpose of step 5 listed above is to generate a large “artificial dataset” consisting of “randomly assembled
rtificial” dialogs.

Table 3 shows the percentage of times that each measure passed the hypothesis test (out of 1000 runs) indicating
 statistically significant higher degree of entrainment captured by that specific quantitative descriptor. We observe
hat both the symmetric and the directional measures of vocal entrainment almost always indicate a statistically
ignificant higher degree of vocal entrainment in real  conversations compared to artificial  conversations establishing
he evidence that the proposed computation is a viable method in quantifying natural cohesiveness in interpersonal
onversations. While the Couple Therapy corpus’ audio recording conditions varied from session to session, the
vidence of improved robustness of the audio feature extraction (Section 2.1) is also clear in the result of this hypothesis
est. This result provides one validation that our vocal entrainment measures computed with signal processing techniques
sing audio-only features carry meaningful information about the nature of the interaction.

Another point to make is that this test of the “natural cohesiveness” in the dialog is conceptually non-directional.
 psychology study on interpersonal communication (Burgoon et al., 1995) describes the following phenomenon in

 dyadic human–human interaction; for a given attribute of interest, e.g., engagement level, when the direction of
nfluence is introduced (not concentrating solely on the absolute degree of influence between dyads), the dynamic
nterplay between these influences can be roughly described in terms of three possible categories (Fig. 4) depending
n who exerts a stronger force of influence. It has been conceptualized that the evolution of these dynamic interplays
haracterizes the essential flow  of the dialog.

While our proposed signal-derived directional entrainment quantification measures carry this notion of dynamic
nterplay between influences of the dyad, it is challenging to systematically validate the psychological significance of
irectional measures in the context of this comparison between real  dialogs and artificial  dialogs. It is encouraging,

owever, to see that our proposed vocal entrainment measures demonstrate their efficacy in capturing the natural
ohesiveness expected to occur in spontaneous human–human conversations.
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Table 4
Analyzing the vocal entrainment measures for affective interactions (positive affect vs. negative affect): the one-sided p-value is presented.

Measures Student’s t-Test Mann–Whitney’s U-Test

ssimLu 0.047 0.047
ssimLw 0.012 0.003
ssimGu 0.073 0.045*

ssimGw 0.005 0.406

dsimLto 0.098 0.078
dsimLfr

0.002 0.002
dsimGto 0.016 0.004
dsimG <0.0001 <0.0001
fr

* Ha : μentrainpos < μentrainneg .

4.2.  Analysis  II:  analyzing  vocal  entrainment  in  affective  interactions

In this section, we demonstrate the potential of utilizing the proposed computational framework in discovering
insights of psychological significance about distressed couples’ interactions. There is extensive psychology literature
studying the nature of the affective states of distressed married couples in conflicts. One very important finding from
the large body of work on negative conflict processes in distressed couples is that behavioral rigidity is characteristic
of relationship dysfunction (Eldridge et al., 2007). In other words, very dissatisfied couples tend to be increasingly
negative and only negative during conflict, and this “reinforcing” of negative behaviors between the spouses is common
and problematic. While most studies have concentrated on negative processes of the distressed married couples, positive
processes have received surprisingly little attention in the psychology literature in general and in work with distressed
couples specifically.

It remains unknown what processes are associated with greater flexibility, such as increased levels of positivity,
during couples’ conflict. We hypothesize that entrainment is likely to be one such process because it is a precursor
to empathy (Verhofstadt et al., 2008). Numerous theoretical models of relationship functioning suggest that empathy
plays a crucial role in helping couples successfully negotiate and resolve conflict (Baucom and Atkins, in press),
perhaps by allowing them to be more flexible and express greater positive emotion during conflict. Based on this idea,
the following one-sided hypothesis testing was carried out on the dataset, Datasetemo (Section 2.2):

Ho : μentrainpos =  μentrainneg

Ha : μentrainpos >  μentrainneg

This hypothesis states that each of the vocal entrainment measures would result in a higher degree of similarity for
spouses in sessions rated with positive  affect compared to spouses in sessions rated with negative  affect.

Table 4 shows the result of the hypothesis testing; numbers in bold are statistically significant at the 5% level. We
observe that most of the measures (especially, directional measures) indicate a statistically significant higher degree
of vocal entrainment for spouses rated with positive affect. Another observation we can make about the symmetric
measures is that those calculated based on the globally computed PCA may lead to different results of the two statistical
tests. For example, the p-values for Student’s t-Test and Mann–Whitney’s U-Test differ a lot for ssimGw and ssimGu .
Given the assumptions of these two tests, this inconsistency may be attributed to the fact that the tested values are
highly concentrated and have very little variance. This property is not really captured correctly by the parametric
test. These two measures, ssimGw and ssimGu , apparently do not differ much between the two affective states we
are interested in. However, the overall degrees of vocal entrainment computed by the directional measures are all
statistically significantly higher (except for dsimLto , which did not meet the 5% level). This suggests that although
all of the entrainment measures are based on metrics of similarity, the directional measures carry somewhat distinct
information from the symmetric measures.
While most psychological studies have shown that the “behavioral dependency” of the negative process occurs
often during distressed married couples’ interactions, we have also demonstrated an initial empirical evidence that
there can be a higher degree of vocal entrainment for spouses rated with a positive affective state when we consider
the directional influences of the vocal entrainment phenomenon. More detailed analyses are needed of the entrainment
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Fig. 5. Examples of vocal entrainment measures: dsimLto , dsimLfr
, ssimLu , ssimLw , are computed for one couple in different affective interactions;

(a) and (b) correspond to positive affect. (c) and (d) correspond to negative affect. (a) Positive session 1. (b) Positive session 2. (c) Negative session
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. (d) Negative session 2.

rocess measured by symmetric measures to strengthen the theories about positive processes in a couple’s conflict.
urthermore, although there has been previous work (Pasch et al., 1997) analyzing the notion of directionality  of

nfluence in affective marital interactions, the knowledge of the dynamics between the behavior interplay remains
imited. The analyses we presented here can be viewed as a first attempt to bring insights into the positive process of
istressed couples’ interactions through the use of the proposed computational framework.

In summary, we tested two psychology-inspired hypotheses. The purpose was to demonstrate that the proposed
ignal-derived entrainment measures, based only on acoustic vocal properties, can capture vocal entrainment between
nterlocutors. These tests, however, only examined the overall pattern of entrainment and not the dynamic flow of the
nterplay between interlocutors’ mutual influences. This was due to the challenges in grounding the results within the
omplex nature of these pattern variations. It is, nevertheless, encouraging to see that these computational measures
re capable of numerically describing several important aspects of human interactions. The analysis that we present
n this section serves as an example of how this computational framework can be a potential viable method in helping
sychologists to quantitatively study entrainment in interpersonal communication and more importantly in various
ental health applications, e.g., distressed marital interactions, where the knowledge remains limited.

.  Analysis  III:  applying  vocal  entrainment  measures  in  affect  recognition

Section 4 presents two analyses examining the validity and usefulness of the proposed computational framework of
ocal entrainment. Herein we consider an application to investigate whether the entrainment measures can be useful in
ffective behavioral code classification. The purpose of the affect recognition experiment is to serve as an exemplary
ase application to examine the predictive power of these audio signal-derived entrainment measures. The dataset used
n this section is the Datasetemo (Section 2.2). We first discuss briefly the statistical modeling framework, Factorial
idden Markov Model, that we used to perform the affect recognition. Then we describe the classification setup, and
nally we present the results and discussions.

.1.  Classification  framework

The entrainment phenomenon is a complex temporal evolution of interplay between the directions of influences
see conceptualization shown in Fig. 4) of the interlocutors. As an example illustrating the complex dynamics of our
roposed vocal entrainment values, we show four vocal entrainment measures for a specific couple under two different
ffective states (two sessions per emotion class) in Fig. 5. There is not an easily observable pattern of evolution on each
ndividual entrainment measure for the two emotion classes throughout the dialog. Each measure seems to indicate

 slightly different degree of vocal entrainment at the same time point. In order to better model and capture this
omplex dynamic in an interaction, we employ temporal statistical modeling techniques. The entrainment measures

our observed features) were computed at each speaking turn and the affective state rating was assigned at the interaction
ession level.
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Fig. 6. Dynamic Bayesian Network representation of (a) HMM and (b) FHMM.

5.1.1.  Factorial  Hidden  Markov  Model
Factorial Hidden Markov Model (FHMM, Ghahramani and Jordan, 1997) is a generalization and extension of the

Hidden Markov Model (HMM). Given a time series, O  = {Ot : t  = 1, .  . ., T}, HMMs describe that the observation at
each time index is probabilistically generated from one of K  hidden discrete states. The probability that an observation
sequence, O, is generated from a particular HMM model, λi, is expressed as follows:

p(O|λi) =
∑
S

π(S1)p(O1|S1)
T∏

t=2

p(St|St−1)p(Ot|St) (15)

where

•  O  = sequence of observation vectors {Ot : t  = 1 .  . .  T};
• S = sequence of discrete states {St : t = 1 . . . T};
• p(St|St−1) = transition probability from state St−1 to St;
• π(S1) = initial state probability;
• p(Ot|St) = probability of observation vector, Ot, given the state, St;
• K  = number of states in the model, i.e., St ∈  {1, . .  ., K}.

HMMs can be easily represented in a directed acyclic graphical structure, i.e., Dynamic Bayesian Network (DBN).
The DBN representation of HMMs is shown in Fig. 6a, where shaded nodes are hidden states. As seen in Fig. 6a, an
HMM is essentially modeling a single hidden process generating a set of observable features probabilistically. Hence,
a natural extension of this framework is introducing layers  of hidden processes consisting of multiple hidden variables
(Ghahramani and Jordan, 1997). Now instead of single state variable, St, we obtain a new state variable, S

(M)
t :

S
(M)
t =  S1

t ,  S2
t ,  .  .  . , SM

t

where M  represents the number of layers, and each Sm
t can take on Km number of states (we simplify it by having

each Sm
t take the same number of possible states, K). Ghahramani introduced one intuitive constraint placed on the

state transitions by considering that each state variable evolves based on its own previous dynamics and is a priori
decoupled from other state variables. This means that each state transition probability distribution can be expressed as
follows:

p(S(M)
t |S(M)

t−1 ) =
M∏

m=1

p(Sm
t |Sm

t−1) (16)

An example DBN representation of FHMM with two layers is shown in Fig. 6b. The transition matrix for all the
state variables can be parametrized by M  distinct K  ×  K  matrices. While the state transitions are not coupled together,

they are coupled at the observation node. One simple form of such a dependency is linear Gaussian, i.e., assuming that
the continuous observation Ot is a Gaussian random vector (N  ×  1 dimension) whose mean is a linear function of the
states. We can write the observation probability as shown below:

p(Ot|Sm
t ) =  |C|−1/2(2π)−N/2 exp

{
−1

2
(Ot −  μt)

′C−1(Ot −  μt)

}
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here

μt =
M∑

m=1

WmSm
t .

ach Wm matrix is an N  ×  K  matrix with each column indicating the contribution to the means for each setting of Sm
t .

 is the covariance matrix.
The use of FHMM in our context of affect recognition, given the vocal entrainment measures as observation, is

ntuitively appealing. The essence of FHMM is modeling multiple loosely  coupled  hidden processes with the generation
f observations depending on all hidden processes. Since the observable feature vectors used in this recognition task
ere computed based on both of the interlocutors, we satisfy the assumption. We designed the FHMM as having two

ayers intuitively modeling two interacting processes (husband and wife). Furthermore, the loosely  coupled  nature of
HMM qualitatively corresponds to the subtle  nature of this entrainment phenomenon.

Since both FHMM and HMM can be represented as DBNs, we implemented them using the Bayes Net Toolbox
BNT) (Murphy, 2001) with the standard junction tree algorithm as the exact inference method; FHMM with two hidden
rocesses is tractable for the junction tree algorithm. Expectation-maximization (EM) was carried out to estimate the
odel parameters. We used a mixture of Gaussians to model the observations, and this was done by simply adding

nother discrete node in the construction of the DBNs. The classification rule was based on the standard maximum a
osteriori probability as shown below:

i∗ =  argmax
i

P(λi|O) (17)

here i ∈  {positiveaffect, negativeaffect}.

.2.  Classification  setup

The recognition was a binary classification task classifying each spouse’s affective state (positive affect vs. negative
ffect) in a given interaction session. There are a total of 280 samples with equally sized splits between the two emotion
lasses.

In addition to the eight vocal  entrainment  measures, we computed five more similarity measures. We denote these five
imilarity measures as “self  vocal  similarity” quantitative descriptors. We computed them to measure the self similarity
f vocal characteristics for a speaker in an interaction. These measures can be interpreted approximately as the degree
o which a given speaker’s speaking style stays the same (consistent) in the course of the dialog. We computed them
sing the same PCA framework (Section 3). Since these measures describe the self similarity, instead of using acoustic
arameters from the other speaker as the “other interacting process”, we used the acoustic parameters of the same speaker
rom his/her own immediate next speaking turn. Moreover, these measures were computed on two turns from the same
ubject; therefore, many of the similarity measures using globally computed PCAs were not applicable (resulting in
he same values for all turns). We used five out of the eight measures (dsims

Lto
, dsims

Lfr
, ssims

Lu
,  ssims

Lw
,  dsims

Gto
).

We trained and evaluated a total of five different models. We trained the combined  model using feature-level fusion
f entrainment measures and self similarity measures; this resulted in a feature vector of length 13. We did not explicitly
rain an FHMM model using self similarity measures because the computation process of these measures inherently
ssumes a single hidden process (computed based on a single spouse in the dialog).

We performed model evaluation using leave-one-couple-out cross validation (81 folds of cross validation) with
he percentage of accurately classified emotions as our metric. Various parameters, such as the number of states and
he number of mixtures in the mixture of Gaussians, were optimized for each testing fold through another fivefold

ross validation done on the training dataset only. We chose the parameters for each fold that resulted in the highest
lassification accuracy from the fivefold cross validation done on the training data. The number of states that were used
anged from three to seven, and the number of mixtures ranged from one to four. We also performed z-normalization
n these similarity measures to obtain better numerical properties.
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Table 5
Results of binary affective state (positive vs. negative) recognition: overall percentage of accurately classified (%), per emotion class accuracy, and
(dSIM, sSIM) directional and symmetric measures accuracy.

Models Accuracy: (positive and negative) dSIM: (positive and negative) sSIM: (positive and negative)

Chance 50% N/A N/A
HMM (entrainment) 55.75%: (49.30 and 62.14%) 55.71%: (50.00 and 61.43%) 50.00%: (38.57 and 61.43%)
HMM (self similarity) 47.50%: (51.43 and 43.57%) 49.29%: (49.29 and 49.29%) 54.64%: (67.15 and 42.14%)
HMM (combined) 55.72%: (52.86 and 58.57%) 50.00%: (45.00 and 55.00%) 58.57%: (57.86 and 59.29%)
FHMM (entrainment) 62.86%: (65.71 and 60.00%) 52.86%: (56.43 and 49.29%) 55.35% (53.57 and 57.14%)
FHMM (combined) 54.29%: (55.00 and 53.57%) 55.36%: (57.86 and 52.86%) 54.64% (57.14 and 52.14%)
The number in bold indicates that the FHMM (entrainment) obtained the highest accuracy among all the models tested. The improvement in the
accuracy is statistically significant using one-sided McNemar test.

5.3.  Classification  results  and  discussions

Table 5 shows the overall affective state classification accuracy results as well as the class-wise accuracy for the
five models described above. There are several observations to be made with Table 5. The best performing model is
FHMM trained with vocal entrainment features only; it obtained an overall accuracy of 62.86%. We used one-sided
McNemar’s test for assessing the statistical significance of this classification result, and this model (FHMM with
entrainment) outperforms all four other models at α  = 0.05 level. The quantification method with FHMM improves the
affective state recognition accuracy by an absolute of 8.93% (16.56% relative) compared to using multiple instance
learning with “variance-preserved” as the only measure of entrainment in the same dataset. It is encouraging to see that
the temporal dynamics of these quantitative descriptors of vocal entrainment possess discriminant power in classifying
a spouse’s affective state.

As noted in the comparison between FHMM and HMM, using only entrainment measures as features, the accuracy of
using FHMM is 7.11% absolute (12.75% relative) better than using HMM. This statistically significant improvement in
affective recognition emphasizes the importance of adequately capturing the interaction dynamics between interlocutors
while using these entrainment measures, which themselves are also derived from both spouses in the interaction.
Furthermore, in Section 4.2, we showed that the average session-level entrainment values computed using directional
measures are different from symmetrical measures; we included the classification accuracy using models trained
separately on directional and symmetrical measures (results are also shown in Table 5). While there exists difference
in the classification results between the two types of measures, more detailed future investigation needs to be carried
out to understand the relationship between the different dynamics of these two types of measures and each spouse’s
affective state. However, the result shows that it is beneficial in the FHMM framework to combine both types of
measures.

Another interesting point regards the comparison between the use of entrainment measures and self similarity
measures (inter vs. intra person modeling comparison). Our result indicates that merely modeling the self similarity
of speaking style in the dialog does not carry information on the affective state of an individual. The accuracy of the
HMM based on self similarity measures is even below chance, and the combination of these features with entrainment
measures is shown to be detrimental to the overall recognition accuracy compared to using only the entrainment
measures.

It is possible that this PCA entrainment framework is not appropriate to quantify the “self similarity” or that
these measures simply do not carry information about this specific attribute of interest: affective state. However, we
hypothesize that we observe this classification result because it is the interaction, i.e., the dynamic interplay between
spouses, that is at the core of characterizing and shaping the essence of each interlocutor’s behaviors and mental
states.

In summary, to illustrate a possible application of using entrainment as features to predict behaviors, we per-
formed affective state recognition in married couples’ interactions. Using only eight features and by utilizing FHMM,
which implicitly modeled the interaction dynamics between the spouses, we obtained an accuracy of 62.86%. It

is promising to see that these signal-derived measures not only can be used to quantitatively describe aspects of
entrainment between interlocutors, but they can also be incorporated in a statistical modeling framework to carry
out behavioral prediction tasks. Further, while we demonstrated through this analysis that there is a relationship
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etween affective state and vocal entrainment, the primary purpose of the experiment was not affect state classi-
cation but to explore the role of entrainment in reflecting behavioral dependencies in (affective) interactions. As

 result, no effort was made to devise the best performing affect classification setup. Prior work, including ours
Georgiou et al., 2011; Black et al., in press; Katsamanis et al., 2011b), has shown that the overall recognition can be
dvantageously improved by combining different communication cues. We believe that to achieve higher accuracy in
ffect recognition, and to extend it to ambiguous emotion classes and other behavioral codes, many more observable
ues must also be included, and the proposed vocal entrainment measures can be an essential component of such a
ystem.

.  Conclusion  and  future  work

The degree of interpersonal behavioral dependency is a critical component in understanding human–human commu-
ication. It also plays a crucial role for psychologists in their study of various intimate and distressed relationships. In
his work, we focused on the phenomenon of entrainment. While the knowledge of this type of behavioral dependency,
ntrainment, is vast across various domains of human interaction studies, its subtle nature and often qualitative aspect
ave likely hindered advances in its computational quantification. In this work, we proposed a signal-derived frame-
ork for computing numerical values indicating the degree of a specific aspect of entrainment, vocal  entrainment. The
uantification framework is unsupervised, and the idea is centered on computing various similarity measures between
CA-based representations of automatically extracted acoustic parameters of interlocutors engaged in a dialog. We
emonstrated in this work that these quantitative descriptors can capture aspects of entrainment and bring insights into
istressed married couples’ interactions using a well-established corpus of spontaneous affective interactions from
eal married couples. Furthermore, we obtained an 62.86% accuracy using just these eight entrainment measures in a
inary affective state recognition task quantitatively corroborating hypotheses about the relation between entrainment
nd affective behavior.

There are many future directions in the work of computationally analyzing the phenomenon of entrainment. This
ork demonstrates the relation between vocal entrainment and affect. Although the two are related, they are not identical,

nd hence the upper bound of estimation of affect through vocal entrainment is unknown. To improve understanding
f the role of vocal entrainment in characterizing human communication, one of the immediate directions is to extend
he classification work in the paper to analyze other behavioral codes of interest in this richly annotated corpus of real
istressed married couples’ interactions. We would like to examine in detail both the predictive power of these vocal
ntrainment measures for various behavioral attributes and the potential upper bound of classification accuracy using
ntrainment in the context of couples’ interactions. Furthermore, we would also like to analyze the vocal entrainment at
he session level for each couple given that the Couple Therapy database is longitudinal in nature. It would be insightful
o have a quantitative monitoring of spouses’ behaviors through a longer time span.

Another important line of work is related to this broad nature of entrainment. Entrainment includes various aspects
eyond vocal similarity, such as lexical entrainment, gestural entrainment, turn-taking entrainment, and mental states
ntrainment. In fact, this phenomenon spans multiple communicative channels and multiple levels in human commu-
ication, and often an interacting effect from all these dependencies between interlocutors characterizes the felt-sense
r quality  of a given interaction. Various studies in mental health have pointed out the crucial aspect of this quality of
n interaction in understanding different scenarios of interactions. One of our future works is to continuously develop
omputational frameworks in examining entrainment through other modalities to both see what is the relationship
f same-subject, across-modality signaling coherence and also to obtain richer information regarding interlocutors’
irroring behaviors.
Finally, the engineering tools developed in the emerging field of behavioral signal processing (BSP) can benefit

sychologists and other domain experts by allowing automated and meaningful computation of behavioral properties
oth for scientific needs and for translational applications in diagnostics and intervention planning. These tools can
enerate quantitative descriptors to be used in analyzing different domains of interpersonal communication. In fact,

ome of these measures have the potential of capturing aspects of interaction that are inherently difficult to annotate even
or experts; one example is the dynamic interplay of directional influences between dyads at various levels (acoustic,
rosodic, lexical, gestural, etc.). This requires a tight collaboration between psychologists and engineers to develop
omputational methods that are grounded in psychologically meaningful questions and theory.
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