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ABSTRACT
Affective multimedia content has long been used as stimu-
lation to study an individual’s personality using physiology.
In this work, we propose a novel Siamese Content-Attentive
Graph Convolutional Network (SCA-GCN) to learn a dis-
criminative physiology representation jointly guided by the
actual video content of the emotional stimuli. The visual con-
tent of the stimuli is integrated into learning to weight the
importance of physiology in the task of personality recogni-
tion. We evaluate our framework on a large public corpus of
physiological data. Our method achieves the state of the art
unweighted accuracy of 72.1%,69.5%, and 68.2% in a binary
classification for dimensions of Openness, Emotion Stability,
and Extraversion, which improves over the baseline DNN by
20.4%, 9%, and 13.9%. Further analysis reveals that there
indeed exists a substantial effect from the media content in
affecting the subject’s internal physiological responses that
result in an improved personality recognition performances.

Index Terms— affective multimedia, personality recog-
nition, physiology, graph convolution network

1. INTRODUCTION

Personality has long been regarded as a key psychological
construct that can be characterized into a few stable and mea-
surable attributes due to its role in influencing an individual’s
emotion, modulating behaviors, and triggering decisions. Re-
search has pointed out there exists a differential impact of
affective media content on humans as a function of an indi-
vidual’s personality. For example, there is a significant pref-
erence bias for extroverts on the choice of TV programs and
music genre [1]; individuals with higher Openness personal-
ity traits often favor reflective/complex music (such as jazz),
while people with higher Neuroticism prefer more emotional
music [2]. In [3] also demonstrates that visual patterns ex-
tracted from ‘favorite’ Flickr images can be used to predict
user traits. This intriguing connection between personality
and media data suggests that the content itself could act as an
external indicator for uncovering a subject’s personality traits.
Developing algorithms to automatically infer a subject’s per-
sonality, i.e., Automatically Personality Recognition (APR),
has become crucial also in delivering personalized media con-
tent with impact [4].

Past research on APR has largely been developed in mod-
eling different signal modalities. For example, many pieces
of research have studied APR using lexical information [5]
with many have mostly found its application on the social
media platform to enable personalized profiling [6]. Recently,
the proliferation of miniaturized sensors has enabled precise
monitoring of various human internal physiological signals.
In contrast to expressive cues (such as text), these biomarkers
provide a scientifically grounded indicator to model personal-
ity traits directly from neurophysiological evidence.

Most if not all of these works share a common experimen-
tal setting, that is, by using emotion-rich audio-video media
data as stimuli to elicit subject’s internal physiological re-
sponses, then these physiological measurements are further
processed for automatic recognition of personality traits. In
fact, APR developments have almost all been operated in this
particular setting [7,8]. Recently, aside from modeling solely
the physiology of the subject of interest, a couple of works
have incorporated other meta information for joint APR mod-
eling, e.g., fusing reactive expressions [9] or including the
emotion variation [10]. However, these works neglect the fact
that an individual’s internal physiology is triggered directly
by the displayed audio-visual content, which serves as a la-
tent conditional control toward internal physiology. Hence,
we argue that to develop an enhanced APR model, these me-
dia content signals should be integrated to properly model the
intricate dependencies of personality as a function of affective
media stimuli and physiological responses.

Specifically, we propose a novel Siamese Content-Attentive
Graph Convolutional Network (SCA-GCN) for personality
recognition using physiology. Our framework is evaluated
on a publicly available large-scale AMIGOS dataset [8], in
which each subject is exposed to a set of audio-visual movie
clips with varying degree of intended affect-triggering con-
tent. We jointly model how a person’s internal physiology
response to these multiple stimuli with a graph structure,
then further incorporate the media descriptors as attention
modulation on the learned subject-wise graph-embedding of
physiological signals. We achieve an unweighted recall of
72.1% on Openness, 69.5% on Emotion Stability, and 68.2%
on Extraversion which is 20.4%, 9%, and 13.9% relative
improvement over the vanilla DNN method.
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Fig. 1. Our proposed Siamese Content-Attentive Graph Convolution Network

2. RESEARCH METHODOLOGY

2.1. AMIGOS Dataset
We use the AMIGOS Dataset [8] for algorithm development
and evaluation. A total of 16 short emotional videos (dura-
tion<250s) were carefully chosen from previous research as
physiology elicitation. Each of the videos had intended emo-
tional effect (indicated as high/low level for both arousal and
valence dimensions) when being displayed to a subject. For
each subject, the Big-Five personality1 is measured using an
online questionnaire, which maps personal traits into five di-
mensions [11]. During the experiment, each subject’s ECG,
EDA, and EEG signal are recorded simultaneously. Hence,
there are three different physiological modalities recorded for
each subject of every video stimuli, and our goal is to infer
each subject’s Big-Five personality traits using these physio-
logical measurements collected during the 16 video clips. We
carry out our personality recognition experiments as a binary
classification problem (for each of the five personality traits)
using cut-off at the median of all subjects.

2.2. Computational Framework
2.2.1. Physiological Descriptors and Graph Building
For preprocessing physiology data, a bandpass filter from 4-
45Hz is applied on EEG while a low-pass filter cut-off at
60Hz is applied on ECG and EDA data. Several standard
low-level physiological descriptors (LLDs) are listed in Ta-
ble 1 and extracted using the NeuroKit [12]. A standard z-
normalization is performed subject-wise on each feature di-
mension to mitigate the issue of individual differences.

We utilize a graph structure to encode the structural rela-
tionship of a subject’s physiological responses (LLDs) across
16 different emotional video stimulus. Specifically, consider
a set of subject i’s d-dimensional LLDsxi = {x1i , . . . , xni } ⊂
Rd while n denotes the number of the stimuli during the ex-
periment, subgraph Gic are extracted from xic ⊂ xi where

1Agre: Agreeableness, Cons: Conscientiousness, Open: Openness,
Emot: Emotional Stability, Extr: Extraversion

Table 1. An overview of physiological low-level descriptors
extracted from [12]. “F*” indicates 15 statistical functions2.
EEG features are calculated for each channel then concate-
nated as a single feature vector.

Modality Low-Level Descriptors

EEG(378)
Hjorth, Kurtosis, Skewness, First diff mean, First diff max,
Sec diff mean, Sec diff max, Slope mean, Slope var,
Wavelets, MaxPwelch, Entropy, ARMPB

ECG(51)

number of artifacts, RMSSD, meanNN, sdNN, cvNN,
CVSD, medianNN, madNN, mcvNN, pNN50, pNN20, Triang,
Shannon h, ULF, VLF, LF, HF, VHF, Total Power, LFn,HFn,
LF/HF, LF/P, HF/P, DFA 1, DFA 2,Shannon, FD Higushi,
Average Signal Quality, F* Cardiac Cycles Signal Quality

EDA(68) F*SCR Onsets, F*SCR Peaks Amplitudes,
F*EDA Phasic, F*EDA Tonic Component

c ⊂ {h, l} indicating whether the sample belong to high or
low level of the original stimulation’s intended emotional ef-
fect. The nodes of the graph Gic are the extracted LLDs xic,
and the Pearson correlations are calculated from any of the
two nodes and those larger than zero are connected as the
edges of the graph. This procedure results in having two phys-
iological graphs Gih and Gil per subject.

2.2.2. Graph Convolutional Network (GCN)
Our model is primarily motivated as an extension of the Graph
Convolutional Model (GCN) that performs a spectral con-
volution on first-order graph neighborhoods [13]. Recently
GCN has received growing attention for its power on cap-
turing inter-relationship between instances (nodes) [14]. The
core GCN layer can be interpreted as a special case of a sim-
ple differentiable message-passing framework:

H(l+1) = σ(D̃
− 1

2 ÃD̃
− 1

2H(l)W (l)) (1)

2max, min, mean, median, std, skewness, kurtosis, min position,
max position, 25 percentile, 75 percentile, 75 percentile-25 percentile,
1 percentile, 99 percentile, 99 percentile-1 percentile
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Table 2. A summary of recognition results. ‘-c’: concatenate a subject’s all physiological responses as a single vector for
classification [8]; ‘-v’: predict personality though majority voting of each response; Aro: Arousal; Val: Valence. Both of these
two indicate the emotional reference during sub-graph splitting. The chance UAR is 0.5.

SVM-c SVM-v DNN-v AMIL G-1-a G-1-b G-1-c G-1-d G-2-a G-2-b G-2-c G-2-d
Aro Val Aro Val Aro Val Aro Val

Agre 0.500 0.389 0.534 0.563 0.500 0.527 0.510 0.532 0.558 0.566 0.563 0.605 0.574 0.642* 0.558 0.603
Cons 0.455 0.406 0.549 0.508 0.507 0.509 0.489 0.524 0.553 0.537 0.563 0.579* 0.537 0.566 0.526 0.526
Open 0.500 0.452 0.517 0.529 0.505 0.510 0.512 0.593 0.647 0.655 0.674 0.676 0.682 0.674 0.676 0.721*
Emot 0.473 0.553 0.605 0.553 0.611 0.608 0.613 0.618 0.637 0.618 0.671 0.624 0.689 0.624 0.695* 0.650
Extr 0.500 0.509 0.543 0.538 0.602 0.583 0.585 0.587 0.679 0.656 0.676 0.663 0.668 0.671 0.682* 0.661

Here, H l denotes the lth layer in the network, σ is the non-
linearity, W is the learnable weight matrix of shape dlxdl+1,
and D,A refers to degree and adjacency matrix respectively.
The ∼ is a renormalization trick in which that the self-
connection is added to each node of the graph. The shape
of the input H0 is N × d, where N is the number of nodes.
This formula can be implemented and backpropagated using
sparse matrix multiplication kernels [15].

2.2.3. Siamese Content-Attentive GCN (SCA-GCN)
In this research, inspired by GCN and the idea of siamese
network [16], our complete SCA-GCN architecture is shown
in Figure 1. During forward stage, both subgraph Gih and
Gil pass through identical GCN layers G to obtain the out-
put node (each stimuli) representation nih and nil. Then,
self-attention mechanism [17] are utilized here for node-wise
aggregation into single graph-level physiological representa-
tion. Then, by extracting the original video stimuli content
vector sc = {s1, . . . , snc} ⊂ Rds where ds is the dimension
of content vector, we learn a modified visual content attention
αic = {αk

ic, k = 1, 2, . . . nc} ⊂ R1 that is calculated as:

αk
ic =

exp(A(concat[nkic, s
k
c ]))∑nc

k=1 exp(A(concat[nkic, s
k
c ]))

(2)

where A is a trainable network for outputting the attention
weights. Note that during the calculation of the αic, sc is
concatenated with the corresponding node vector to obtain
the attention weight. We consider this step as an injection
of visual stimuli affective content in regularized learning of a
graph representation for personality classification.

In this research, the visual content vector of each emo-
tion stimuli video is extracted using the pre-trained Inception
and PCA model proposed in [18] and results in image-level
descriptors of dimension 1024. To prevent the curse of di-
mensionality, another PCA was applied over the dataset that
reduces the dimension to 32, and a video-level content vec-
tors sc are further aggregated using mean pooling. Finally,
we obtain the subgraph embedding zic as:

zic = n
ᵀ
icαic (3)

Both zih and zil are concatenated and fed into the prediction
network P for persoanlity prediction. The network udpate
criteria would be standard cross entropy loss.

3. EXPERIMENTAL SETUP AND RESULT

3.1. Experimental Setup
The exact architecture of our content-attentive GCN includes
three blocks of networks: GCN block G consist of stan-
dard GCN layer with dimension [488 − 24]; attention block
A is composed of a single trainable matrix with dimension
[54 − 1] to output single attention weight for each node;
the final prediction layer P is constructed using dense layer
with dimension [48 − 2]. Several hyperparameters were
grid-searched: dropout rate between [0.2, 0.5], learning rate
among [0.01, 0.005, 0.001]. Batchsize is fixed as 16, the max
epoch is 200, and the optimizer is Adam. To prevent overfit-
ting, we carry out all experiments using a subject independent
10-fold cross-validation and report the average results of 10
independent experiments. The final evaluation metric used is
the unweighted average recall (UAR).

3.1.1. Comparison Models
We first conduct our experiments utilizing linear SVM and
vanilla DNN without considering structural relationships of
physiological responses across video stimulus. Then we com-
pare our methods with the following models to examine the
effectiveness of our proposed content-attentive GCN:

• Attention Multiple Instance Learning (AMIL) [19]:
Multiple instance learning has been a variation of su-
pervised learning which is designed to predict a single
label while a bag of instances is given. In this scenario,
the bag could be viewed as the stimulated physiologi-
cal responses while the label refers to a subject’s per-
sonality. The improved AMIL adopts the self-attention
mechanism as a soft-voting scheme during the bag pre-
diction. However, comparing with graphical models,
this method focuses on an instance-level prediction but
omits the potential structural information between in-
stances.

• One-way Content-Attentive GCN (G-1-x) The vanilla
1 way GCN models. Here 1-way refers that there would
be only one graph built utilizing all of the physiological
responses of a subject (instead of 2 subgraphs). There
are several variations: a: average all the nodes without
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Table 3. A summary of average attention weights along 16 video stimulus. The bold part refers to weights larger than 0.2. ‘*’:
The highest among all videos.

Personality Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Open G-2-b 0.1 0.12 0.12 0.15 0.14 0.13 0.1 0.13 0.11 0.22* 0.11 0.12 0.15 0.12 0.17 0.14
G-2-d 0.09 0.1 0.03 0.12 0.72* 0.05 0.11 0.04 0.02 0.06 0.04 0.09 0.36 0.09 0.12 0.1

Emot G-2-b 0.11 0.13 0.12 0.14 0.15 0.14 0.12 0.15 0.11 0.19* 0.12 0.11 0.12 0.15 0.14 0.11
G-2-d 0.11 0.09 0.07 0.08 0.43* 0.1 0.02 0.19 0.09 0.16 0.12 0.15 0.1 0.14 0.14 0.12

Extr G-2-b 0.12 0.13 0.1 0.16 0.12 0.12 0.1 0.14 0.09 0.26* 0.13 0.13 0.13 0.14 0.12 0.14
G-2-d 0.08 0.09 0.09 0.06 0.33* 0.06 0.29 0.15 0.11 0.11 0.12 0.12 0.22 0.07 0.12 0.13

attention mechanism; b: attention weights α are cal-
culated purely from self-attention; c: α are calculated
using one-hot encoding of original video stimulation’s
ID as the content vector; d: α are calculated with
visual content embedding described in section 2.2.3.

• Siamese Content-Attentive GCN (G-2-x) To charac-
terize the physiological responses under different emo-
tional inducement levels (high/low of either arousal or
valence), we split a subject’s physiological responses
into two subgraphs Gih,Gil. Then the physiological
embedding with similar stimulation would be aggre-
gated through this siamese networkG into a single vec-
tor for further classification. The rest of the variations
are the same as one-way GCN.

3.2. Personality Recognition Results
Table 2 summarizes our personality recognition results. Our
proposed SCA-GCN(G-2-d) reaches the best UAR on Open,
Emot, and Extr, which is a relative gain of 20.4%, 9% and
13.9% over the naive DNN voting technique. Several notable
observations can be summarized. Firstly, using the graph
to represent structural information outperforms other models
for this task of personality recognition using physiology. We
found that directly concatenating physiological features of a
subject across all emotion stimuli would lead to an extremely
large feature dimension creating issues of overfitting. As for
the video-wise majority-voting technique, lack of proper inte-
grative modeling between different responses deteriorates the
personality recognition performances.

We observe that while AMIL is a strong baseline, its lack
of explicit modeling on the inter-responses structure leads to
unsatisfying recognition results. Furthermore, we observe for
our proposed model, in dimensions of Crea, Emot, and Extr,
our G-2-d outperform both G-2-c and G-2-b. This results in
intriguing showing that not only knowing ‘WHICH’ specific
emotion stimuli could correlate with the physiological sta-
tus in terms of performing personality recognition, but also
‘WHAT’ the content of the stimuli itself is more important.
Lastly, two-way siamese architecture enhances the model ca-
pability. During the subgraph splitting step, we manually
force each subgraph could only bind edges among nodes from
a similar intended emotional stimulation. We believe that it
acts as a hard constraint as if we force our model to focus
on learning subtle structural information of physiology under

similar affective stimulation, and this fine-grained representa-
tion improves our personality recognition results.

3.3. Analysis on Attention
In this section, to understand the potential modulation of vi-
sual content stimuli toward physiological personality recogni-
tion, we gather our model’s visual content-attention weights
α for each subject then average them into a video-level statis-
tics (table 3). Here we only report numbers from Crea, Emot,
and Extr due to their high recognition performances. We im-
mediately observe that after incorporating the visual content
vectors for attention learning, attention weights tend to be
more concentrated on a smaller subset of video stimuli. For
example, in Open, the key physiology shifts from video 10 to-
ward video 5 and 13 and especially focusing on 5 with an at-
tention weight of 0.72. A similar phenomenon is also be seen
in the other two personality attributes. Also, we notice that
after the embedding of the visual content, physiological re-
sponses from video 5 are consistently selected in recognizing
these three personality attributes, and video 13 is especially
critical for Open and Extra. It is interesting to observe that
there truly exist interrelationships between personality traits
and physiology which is conditioned on the content of the ex-
ternal media stimuli. The reason why video 5 and 13 are es-
pecially relevant will require a further detailed investigation.

4. CONCLUSION

In this work, we present a novel framework of the siamese
content-attentive graph convolution network for personality
recognition using physiology. The experiments show that
our method reaches the known state-of-the-art personality
recognition results on the AMIGO database, and the analysis
reveals that the inclusion of visual content regularizes the
learning to obtain a more discriminative physiological repre-
sentation. To our best knowledge, this is one of the first work
on APR that jointly considers the physiology (stimulated
response) and the actual video content (stimulation mate-
rial). There are multiple future directions. An immediate one
would be verifying our results on similar datasets. Second,
we will include additional modalities in the emotion stimuli,
e.g., the acoustic sound of the video. By better understand
exactly what components within a media clip that would
trigger physiological responses linked to a subject’s own per-
sonality would help in advancing a variety of human-centered
multimedia applications [20, 21].
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