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Abstract—The heterogeneity in Autism Spectrum Disorder
(ASD) remains a challenging and unsolved issue in the current
clinical practice. The behavioral differences between ASD sub-
groups are subtle and can be hard to be manually discerned
by experts. Here, we propose a computational framework that
is capable of modeling both vocal behaviors and body gestural
movements of the interlocutors with their intricate dependency
captured through a learnable interlocutor-modulated (IM) atten-
tion mechanism during dyadic clinical interviews of Autism Diag-
nostic Observation Schedule (ADOS). Specifically, our multimodal
network architecture includes two modality-specific networks, a
speech-IM-aBLSTM and a motion-IM-aBLSTM, that are com-
bined in a fusion network to perform the final three ASD subgroups
differentiation, i.e., Autistic Disorder (AD) vs. High-Functioning
Autism (HFA) vs. Asperger Syndrome (AS). Our model uniquely
introduces the IM attention mechanism to capture the non-linear
behavior dependency between interlocutors, which is essential in
providing improved discriminability in classifying the three sub-
groups. We evaluate our framework on a large ADOS collection,
and we obtain a 66.8% unweighted average recall (UAR) that is
14.3% better than the previous work on the same dataset. Further-
more, based on the learned attention weights, we analyze essential
behavior descriptors in differentiating subgroup pairs. We further
identify the most critical self-disclosure emotion topics within the
ADOS interview sessions, and it shows that anger and fear are
the most informative interaction segments for observing the subtle
interactive behavior differences between these three sub-types of
ASD.

Index Terms—Behavioral signal processing, autism spectrum
disorder, multimodal BLSTM, attention mechanism.

I. INTRODUCTION

S ELF-DISCLOSURE is a dynamic and unique process that is
naturally carried out in face-to-face interaction settings [1].

The process of message exchange between communicators dur-
ing self-disclosure differs greatly from other general conversa-
tions. Self-disclosure involves people revealing personal private
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information including opinions, feelings, emotion and experi-
ences, to another person [2], [3], which tends to induce insecure
feelings for the revealing person [3], [4]. This process is, how-
ever, an effective mean for people to enhance intimacy and trust
between the interacting partners [5]. In fact, the interpersonal
relationship between the two communicators plays an important
role in the levels of disclosed information [6]. The better-liked
partner [7] and the manner of the listener’s response [8] are
two of the most important factors in influencing the level of
disclosed information. For example, disclosure behavior in a
highly intimate relationship like spouses can easily lead to an
exchange of more private thoughts; in contrast, for the low
intimate relationship like strangers, self-disclosure often results
in sharing non-private self-descriptive information.

The self-disclosure process is also critical as a clinically-
valid interaction setting carried out mostly in the psychother-
apy session between the subject and the therapist. Not only
is it important to know about the subject’s story through their
self-disclosure, but studies have also shown that the appropriate
level of self-disclosing behavior from the therapist is effective in
building trust with patients, which would lead to a higher chance
of successful therapy [9], [10]. Hence, instead of considering dis-
closure interaction as a unidirectional process from the discloser
to the recipient, this process is often considered as a reciprocal
social exchange process [11], [12], i.e., both the communica-
tors continuously adjust and adapt their behaviors according to
one another during their interactions. This mutually-dependent
and adaptive behavior shapes the overall disclosing process
dynamically and constructs the conversation context for the
on-going interaction. Past research has shown that entrainment
(a.k.a. interaction synchrony) is a critical accommodation pro-
cess of human communication [6], [13] especially relevant for
psychotherapy. Koole et al. depict an Interpersonal Synchrony
(In-Sync) model demonstrating that the coordination processes
resulting from the basic low-level movement to the high-level
coordination of language and thought are all crucial factors
during psychotherapy in achieving effective treatment [14].

In this work, we concentrate on studying subjects of Autism
Spectrum Disorder (ASD) during interactive clinical interview
sessions, targeting the self-disclosing part of the interview. ASD
is a neural developmental disorder characterized mainly by the
associated socio-communicative deficit [15], [16]. Expressive
symptoms such as restricted and repetitive behaviors [17], lack
of eye contact [18] and poor language skills [19] often appear
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to be the distinctive abnormal characteristics of ASD subjects
when they interact with others. In order to quantitatively assess
the severity of their socio-communicative deficits, researchers
have developed a series of instruments to elicit and measure the
subject’s behaviors with respect to different intended functions.
Among these instruments, the Autism Diagnostic Observation
Schedule (ADOS) [20] has been recognized as the gold standard
instrument, which is based on a semi-structured diagnostic inter-
view protocol, in assessing the severity of the autistic symptoms
of individuals. During the administration of an ADOS, a certified
clinician (investigator) plays the role of an interaction partner,
who is trained to elicit the participant’s behaviors and acts as
an experienced observer at the same time to rate the sever-
ity. This spontaneous dyadic setting during an ADOS session
provides a well-defined and verified protocol in investigating
socio-communicative behavior symptoms of ASD.

Aside from the apparent deficit in socio-communicative skills,
a series of emotion-related issues are commonly identified as
essential features of ASD, i.e., ASD subjects are unable to cor-
rectly recognize other’s emotional states [15], [21]. Specifically,
compared to typically-developing subjects (TD), individuals
with ASD display more frequently their negative emotions, like
anger and anxiety, often with stronger intensity [22]–[24], and
they also show poorer ability in understanding complex socially-
derived emotion [25]. Researchers have further identified that
ASD subjects have impaired mechanism in self-awaring their
own negative emotional experiences in daily life [26]. This
impaired mechanism in self-assessing and recalling one’s own
negative emotion not only concerns their emotion regulation
problem [27], [28] but also leads to more maladaptive behaviors
when experiencing negative emotion and displaying internal
experiences expressively [29].

Emotion part during the administration of an ADOS is de-
signed specifically to assess the emotion deficit in ASD. Emotion
part consists of an interactive conversation session, where the
investigator would use alternated questions to ask the ASD
participants in order to facilitate the ASD subjects to self disclose
and recall their own emotional experiences in daily life and
further describe/express their feelings about it. This procedure
provides not only a suitable environment to investigate emotion-
related issues for clinicians but also an environment for compu-
tational researchers to develop algorithms that can automatically
assess varying socio-communicative abilities of ASD due to its
back-and-forth conversational nature. For example, Bone et al.
observe an increase in subtle turn-end pitch slope and abnormal
voice quality on both the investigator and the participant that
is related to the severity of ASD symptoms and the acoustic-
prosodic coordination is also observed between communicators
during the Emotion part of the ADOS [30]. Moreover, Bone
et al. extend their studies to further investigate the relationship
between the levels of ASD severity and the resulting turn-taking
dynamics during the Emotion part of the ADOS [31].

In this work, we also leverage the interactive nature of the
Emotion part in order to compute the socio-communicative
behaviors expressed by both interlocutors for the task in differen-
tiating the three diagnostic categories of ASD. The three unique
subgroups, Autistic Disorder (AD), High-Functioning Autism

(HFA), and Asperger Syndrome (AS), defined by DSM-4, are
included in our experiment. In the current clinical practice,
many empirical pieces of evidence suggest that the differences
between these three ASD subgroups are indistinguishable given
the available clinical measurements [32]–[34]; hence, the newly-
revised DSM-5 (Diagnostic and Statistical Manual of Mental
Disorders version 5 [35]) merges these autism subgroups into a
single umbrella term, ASD. It re-defines the categorical system
used in DSM-4 with the dimensional model, i.e., heterogeneity
exists in ASD individuals can be viewed as a combination
of different deficit dimensions instead of distinct categories.
However, many researchers present an opposite view on this
new system, which they believe has inevitably enlarged the sub-
groups differences further as compared to the previous categor-
ical system [36], [37]. Many argue that although the difference
between these subgroups can be divergent and hard to observed
directly given current clinical instruments, differential diagnosis
remains a fundamental and a necessity in order to identify the
etiology and further advance the development of a more targeted
treatment for ASD [38]–[40].

In fact, a couple of recent research have shown initial empir-
ical evidence on developing effective computational methods
as an automatic version of the instrument to distinguish ASD.
It computes behaviors of the interlocutors directly from the
recorded signals (audio and video) and the experiment result
shows that these quantitative descriptors are capable of provid-
ing discriminative power in differentiating subgroups of ASD.
Specifically, recent works published by Chen et al. have shown
supporting evidence that by computing directly the low-level
descriptors on motion and vocal behaviors from both the par-
ticipant and the investigator jointly during the Emotion part of
the ADOS, these behavior features can be used to differentiate
the three subgroups. It achieves 52 % unweighted classification
accuracy, which is substantially better than the chance base-
line [41], [42]. These stuedies point to the potential of deriving
novel signal processing and machine learning-based methods
for behavior measurements of the ASD subjects that are capable
of capturing information beyond current clinically available
instruments.

Our previous work has advanced Chen et al. research tech-
nically by introducing a network architecture of interlocutor-
modulated attention network (IM-aLSTM) that learns to
integrate both interlocutors’ vocal information during Emotion
part of an ADOS conversation to perform ASD subgroup clas-
sification [43]. Inspiring from the IM-aLSTM framework, in
this work, we extend further the use of interlocutor-modulated
attention mechanism, where the participant’s BLSTM is learned
by jointly integrating discriminative information of the dyad
together, toward developing a complete multimodal (speech and
gesture information) neural network architecture for differenti-
ating between the three different groups of ASD. Specifically,
our contributions in this work beyond our previous work [43] is
listed below:

1) Development of a multimodal (speech acoustics and
body gestures) interlocutor-modulated (IM) attention net-
work architecture to differentiate between the three
ASD subgroups;
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2) Integrative embedding of the interlocutor relationship as
an IM-attention mechanism to better model jointly both
the interlocutor’s behavior dynamics with fusion modeling
of the two behavior modality; and

3) Additional analysis on the working of IM-mechanism in
understanding the ASD subgroup differences during Emo-
tion disclosure as a function of the two behavior modalities
expressed in a dyadic interaction setting from a large scale
real-world audio-video ADOS interview dataset

Our multimodal IM-aBLSTM model achieves the best un-
weighted average recall of 66.8% in a three subgroup categoriza-
tion, which is 14.3% absolute improvement on the exact same
dataset by Chen et al. [42], by modeling the participant‘s vocal
behaviors and the investigator’s gestural behaviors. Our further
analysis shows a consistent result that the learned attention
weights for both modalities are concentrated heavily in the
regions where the ASD participant is being asked to reveal their
own negative emotional experiences. It further strengthens the
idea that the difference between the three subgroups may be
related to the manifested behavior expressions exhibited during
the interactive spoken interaction when self-disclosing negative
emotion episodes.

The rest of the paper is organized as follows: Section 2
introduces our framework along with the database and de-
tail methodology. Section 3 summarizes our experimental re-
sults and discussions. Section 4 is a conclusion and future
work.

II. RESEARCH METHODOLOGY

A. The ADOS Audio-Video Database

The ADOS audio-video database1 was collected by SSG
(one of the corresponding authors) at the Department of Psy-
chiatry of the National Taiwan University Hospital (NTUH),
Taipei, Taiwan. The ADOS is a semi-structured dyadic interview
between a clinical investigator and an ASD participant. The
procedure of ADOS usually lasts about 45 to 60 minutes. It
includes a series of activities for evaluating different functions
of the ASD participant, e.g., communication, social interaction,
emotional experience, telling a story, etc. In this work, we utilize
the Emotion part of the ADOS session as our analysis data.
In order to include the samples with enough communicative
ability, i.e., the ability to carry out a meaningful conversation,
we include individual samples of ADOS administrated with
Module 3 and Module 4 in our dataset; this set corresponds to
subjects with relatively fluent expressive language levels and
mature chronological age. Each Emotion part of the ADOS
lasts around 5 to 7 minutes, and it includes a spontaneous
conversation between the investigator and the participant. The
investigator utilizes a series of semi-structured questions to ask
the participant about their past emotional experiences, including
four basic emotional experiences: happy, angry, fear, and sad, in
their daily life. The semi-structured format of the Emotion part
usually involves the investigator to engage the participant in a
conversation as follows:

1Approved by IRB: REC-10501HE002 and RINC-20140319.

TABLE I
DETAILED DEMOGRAPHICS OF THE ASD SUBGROUPS: THE TABLE INCLUDES

THE INFORMATION ABOUT SAMPLE NUMBERS, AGES AND MODULE OF ASD
PARTICIPANTS IN EACH SUBGROUP

Investigator: Do you feel the [emotion] sometimes?
Participant: [Yes, when I ........; No, I don’t ....].
Investigator: What happens, when you are [emotion] ?
Participant: ........
Investigator: Can you describe the feeling of the [emotion]?
Participant: .........
The ADOS audio-video database includes audio recordings

from two separate Bluetooth wireless lapel microphones (each
microphone directs at an interlocutor) and video recordings
using two fixed positioned high-definition cameras. Each video
recording is collected with 30 fps, and the audio is collected
at 44100 sampling rate per channel. Table I summarizes the
detailed demographics of the participant’s information in our
database. We use a total of 60 ASD subjects (three different
subgroups), and this dataset includes the same amount of data
samples as done in the previous works [41], [43]. The diagnos-
tic outcome is determined based on a combination of clinical
diagnosis by senior child psychiatrist’s clinical judgment and
other relevant clinical interviews and assessments like ADOS
and Autism Diagnosis Interview-Revised (ADIR) [44]. This
ADOS Audio-Video Dataset is to our knowledge one of the
largest clinically-valid audio-video corpuses for research.

B. Multimodal Interlocutor-Modulated Attentional BLSTM

The complete multimodal interlocutor-modulated attentional
bi-directional long short term memory network (Multimodal
IM-aBLSTM) structure is presented in Figure 1. The overall
architecture is composed of three different sub-networks, in-
cluding a speech-IM-aBLSTM, a motion-IM-aBLSTM, and a
final fusion network, each designed with a different purpose.
With the characteristics of the question-answer pattern in the
ADOS Emotion part, the choice of a BLSTMs time step is at
every turn. We define the turn boundary as a complete speech
portion of a participant before the speaking floor changes to the
investigator (and vice versa), and this particular definition of
turn-taking events has also been used in the previous study on
the same dataset.

Both speech-IM-aBLSTM and motion-IM-aBLSTM include
interlocutor-modulated attention mechanism that learns to inte-
grate the interlocutors’ behavior information jointly as atten-
tion that reweights the turn-level behavior representations to
perform the three subgroup classifications. For the speech part
(speech-IM-aBLSTM), we input the vocal features from both
the investigator and the participant to learn the attention weight
and reweight the participants’ vocal behavior to perform the
recognition. For the motion part (motion-IM-aBLSTM), based
on the gestural features derived from the tracked body joints
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Fig. 1. The Framework of Multimodal Interlocutor-Modulated Attentional BLSTM (Multimodal IM-aBLSTM): The learnable weight pair αF and αB within
the BLSTM are termed as the interlocutor-modulated attention (IM) that integrates dyad’s information to improve the discriminability in differentiating between
different subgroups.

of each frame, we input these motion features from both the
interlocutors to learn the attention network and reweight the
investigator’s motion feature to perform the prediction. In order
to leverage both discriminative information from both behavior
modalities, we design a third fusion network to combine the
information from the two different modalities to make the final
classification. In the following sections, we will elaborate on
the extraction of acoustic features, the extraction of motion fea-
tures, turn level behavior representations, and the IM-attention
mechanism used in the BLSTM.

1) Acoustic Features Extraction: The turn-taking event we
defined in this paper is labeled manually. First, we segment the
Emotion part into multiple turn-taking event regions. In order to
segment a simple question-answer pattern, we disregard the back
channels during the conversation. Each of the turn-taking events
is made of 2 turns, a complete floor exchange in the form of “the
investigator - the participant.” In specific, the “i-th” turn-taking
event starts from the start time of investigator’s turn t(i)inv_start

to the ending time of participant’s turn t(i)part_end. The defini-
tion ensures the value of turn-taking event with the following
order, t(i)inv_start < t(i)inv_end < t(i)part_start < t(i)part_end.

For the speech turn-level feature, we only extract the speech
feature in the non-silence part of the speaker, i.e., the in-
vestigator‘s features are extracted from the corresponding
speaker’s portion starting from t(i)inv_start to t(i)inv_end. Sim-
ilarly, the participant’s feature is extracted from t(i)part_start
to t(i)part_end. Within each turn, we extract frame-level acous-
tic low-level descriptors (LLDs) including pitch, intensity,
harmonic-to-noise ratio (HNR), MFCC, and their delta and

delta-delta by using the Praat toolkit [45]. Totally, 48 dimen-
sions of acoustic features, including pitch, intensity, MFCC and
HNR, are all extracted at a framerate of 10 ms; these LLDs are
z-normalized with respect to each speaker.

2) Motion Features Extraction: In the previous work [46],
[47], the deficit motion perception during the social interac-
tion has been considered as the general symptom of an ASD
subject. Furthermore, the other study [48] also shows different
levels of perception between ASD subgroups, like HFA and AS.
Based on the understanding of the motion perception deficit,
we further extract the interlocutor’s body movement during
the ADOS interaction. For motion feature, since we want to
capture the complete expressive motion behavior within each
of the turn-taking events, we consider the same interval from
t(i)inv_start to t(i)par_end for both participant and investigator
to extract the feature. For each speaker, we extract frame-level
body joint angle as features by utilizing the state-of-the-art body
joint extractor, the Openpose toolkit [49], [50]. It computes 2D
body joint positions for every frame in the original 30 fps video
sequence. We remove frames with low confidence detection
accuracy. Furthermore, in order to eliminate the variability of
body types for different people, we compute the body joints
angle as the most basic unit of measurements. We have a total of 8
different angles of body joints according to the 10 different body
joints tracked on the upper body. Figure 2 shows the location of
the 10 different points. Besides computing the original 8 angles,
which represents the static gestures of the body, we further
extract delta and delta-delta to capture the dynamic of these
body gestural changes. To sum up, we extract 24-dimensional
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Fig. 2. 8 Angles of Body Joints: we have 8 different angles of body joints
from a to h. Besides, we calculate the delta (first-order difference) and delta-delta
(second-order difference) on each angle per frame. Totally, there are 24 different
low-level motion features to measure the behavior of the upper body.

motion LLD features to capture the interlocutor’s body language
in each frame.

Since the real coordination of body joints should be a 3-
dimensional vector, the body joint we extracted is a 2D pro-
jection vector of the real position without the depth informa-
tion. Because the recording environment is set with the fixed
position camera and fixed position desk, we neglect the slight
difference between different samples and compute the angle be-
tween the body joint directly as our motion feature. Specifically,
three different parts of the upper body movement are captured by
these angles. Instead of considering as facial expression move-
ment, the angle of e, f , g and h represent the head movement
like looking up and down. The angles like a and b correlate
to the movement of the neck, and angles c and d represent the
movement of the arm.

3) Turn-Level Behavior Representation: In order to derive
a vector characterizing each of the turns consisting of varying
length LLD sequences, we encode the temporal sequence of
behavior LLDs to a single fixed dimensional vector of turn-
level representation using a method of Gaussian Mixture Model
(GMM, λ) based Fisher encoding [51]. The method first con-
structs an unsupervised background GMM learned from the
LLDs in the whole training set, and in order to encode a data
sample consists of a sequence of LLDs, we compute the gradient
log-likelihood function (fisher scoring function) to this GMM.
This fisher scoring function (indicating the direction of λ to
better fit x̄) of the first and second-order statistics is derived
below:

gXμc
=

1

T
√
πc

T∑

i=1

rt(c)

(
xt − μc

σc

)
(1)

gXσc
=

1

T
√
2πc

T∑

i=1

rt(c)

(
(xt − μc)

2

σ2
c

− 1

)
(2)

whereT is the total frame number, and rt(c) is the posterior prob-
ability given the observation xt produced by the c-th Gaussian
with mean μc and standard deviation σc. This derived encoded
vector of [gXμc

gXσc
] is our turn-level features.

The GMM-fisher encoding method was first introduced in the
image classification task [51]. Recently, it also has shown to be
a powerful representation for speech-related recognition tasks,
e.g., detection of emotion [52], paralinguistic attributes [53], and
evaluation of impromptu speech [54]. Due to its wide usage in
providing a powerful representation on frame-level descriptors,
we adopt this method for obtaining the turn-level representation
as input for both the motion-IM-aBLSTM and the speech-IM-
aBLSTM. We empirically set mixture numbers as four in the
training of our background GMM for both speech and motion
modality.

4) Interlocutor-Modulated Attention Mechanism: Here, for
both the motion and speech modality, we utilize the bi-
directional Long Short Term Memory (BLSTM) neural net-
work [55] to model the time-dependent relation between the
turn-level feature sequences. As an improved version of RNN,
the inclusion of the gating mechanism in LSTM can learn the
time-dependent sequential information using the transmitted
temporal gradient mitigating gradient vanishing or gradient
exploding problem. Moreover, BLSTM consist of 2 different
directions of LSTMs [56], which are the forward LSTM and the
backward LSTM to further improve the modeling capacity.

In order to capture a particular speaker’s time-dependent
behavior progress during the overall interaction, we build the
investigator’s (or participant’s) BLSTM only with the investiga-
tor’s (or participant’s) turns. As our experiment results show, we
found that speech IM-aBLSTM with participant‘s speech feature
can achieve better results than using the participant’s speech
features. In contrast, we found that motion IM-aBLSTM with
an investigator‘s motion feature can achieve a better result than
using the investigator’s speech features. Therefore, in speech
IM-aBLSTM, we input the “i-th” participant’s turn-level vocal
feature sequence f(s) (Section II-B3) to obtain a corresponding
output sequence of speech BLSTM’s hidden states, hs:

{
h1(s), . . . , hT (s)

}
= BLSTMpart(

{
f1(s), . . . , fT (s)

}
)

Similarly, in motion IM-aBLSTM, the turn-level motion feature
sequence f(m) from investigator can also be transformed to
hidden states sequence h(m) using a motion BLSTM:
{
h1(m), . . . , hT (m)

}
= BLSTMinvt(

{
f1(m), . . . , fT (m)

}
)

Moreover, we incorporate the use of attention mecha-
nisms [57] into our BLSTM time series modeling. The attention
mechanism has been considered as a general soft-selecting neu-
ral network structure that can automatically learn to increase
the weighting on important parts and decrease the effect on
non-important parts of the feature sequence during the network
learning procedure. It is known to obtain improved performance
in multiple recognition tasks, e.g., motion recognition [58],
emotion recognition [59], prominent counselor and client be-
haviors during addiction counseling [60], etc. In our work, we
also utilize the attention mechanism in order to leverage the
controlling mechanism of attention to emphasize the interaction
segment between dyads. Based on the idea that interlocutors
would demonstrate synchronized entrainment and mutually de-
pendent behaviors in spontaneous dialogs, we propose a novel
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Fig. 3. Attention Network Architecture Differences between M3 and our
proposed models: We improved the conventional attention mechanism in M3 by
jointly considering the interlocutors information to construct the IM-attention
mechanism in our proposed IM-aBLSTM.

interlocutor-modulated attention weights, αi, as the extension
and modification to the conventional attention weights.

The interlocutor-modulated attention weights are introduced
with an intent to capture the time-dependent interactive relation-
ship between the interlocutors (the architecture of this attention
mechanism is shown in Figure 3). We first additionally train an
investigator‘s speech BLSTM and a motion BLSTM using the
investigator’s turn-level acoustic features f(m) and participant’s
turn-level motion features f(m). Then, the hidden state sequences
of g(s) and g(s) are derived for the investigator:

{
g1(s), . . . , gT (s)

}
= BLSTMinvt(

{
f1(s), . . . , fT (s)

}
)

{
g1(m), . . . , gT (m)

}
= BLSTMpart(

{
f1(m), . . . , fT (m)

}
)

In order to learn the non-linear relationship between these
hidden state sequence of g(s) and g(s). We add a separated
fully-connected (fc) layer to these two hidden states:

ĥt(s) = ReLU
(
Winvt(s)ht(s)

)
(3)

ĝt(s) = ReLU
(
Wpart(s)gt(s)

)
(4)

The same procedure with the motion part is employed to
obtain the sequence of ĥ(m) and ĝ(m) with parametersWinvt(m)

and Wpart(m). After passing the separated fc layer with the
parameters Winvt and Wpart, we then compute the similarity
score as a dot product between the two interlocutors’ hidden
states as our attention weight ut for the“t-th” time-step using:

ut(s) =
〈
ĥt(s), ĝt(s)

〉
(5)

Similar to the conventional attention weight, we normalize
our IM-attention weights across time to obtain αt for speech
IM-aBLSTM:

αt(s) =
exp

(
ut(s)

)
∑T

t exp
(
ut(s)

) (6)

These interlocutor-modulated attention weights are combined
to the participant‘s BLSTM’s hidden vectors ht(s) using the

following equation:

v(s) =

T∑

t

αt(s)ht(s) (7)

For the final representation V̂(s) in speech IM-aBLSTM, we
pass the v(s) through 3 fully-connected (fc) layers and 1 dropout
layers as Figure 1 shows.

Similar to the speech IM-attention mechanism, we carry out
the equation (3,4) with parameter Winvt(m) and Wpart and
following (5,6) to obtain the αt(m) for motion IM-aBLSTM
and apply the attention weights to the investigator‘s motion
BLSTM’s hidden vectors ht(m) using the equation (8).

v(m) =

T∑

t

αt(m)ht(m) (8)

For the final representation V̂(m) in motion IM-aBLSTM, we
pass the v(m) through a dropout layer as Figure 1 shows.

5) Speech-Motion Fusion DNN: In order to merge the
discriminative information from the two different modalites
BLSTMs, we construct a Speech-Motion Fusion DNN structure.
The architecture is presented in Figure 1. First, the final repre-
sentation V̂(s) and V̂(m) for every dyad can be used to predict
the probability of being in one of the ASD subgroups.

y(s) = softmax(V̂(s)) (9)

y(m) = softmax(V̂(m)) (10)

Therefore, we first pre-train the speech-IM-aBLSTM and the
motion-IM-aBLSTM separately by using the cross-entropy loss
Loss(s) and Loss(m).

Loss(s) =

N∑

n

K∑

k

−Y k
true log(y

k
(s)) (11)

Loss(m) =

N∑

n

K∑

k

−Y k
true log(y

k
(m)) (12)

After the pre-training, we freeze the two separated structures
and take the V̂(s) and V̂(m) output from networks as the input
for Speech-Motion Fusion DNN. The final recognition result of
the three groups of ASD Y(fusion) can be derived after training
the fusion network with Loss(fusion) listed below:

Y(fusion) = FusionNet(V̂(s), V̂(m)) (13)

Loss(fusion) =

N∑

n

K∑

k

−Y k
true log(Y

k
(fusion)) (14)

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

1) Experiment 1. Models Comparison: We compare our pro-
posed interlocutor-modulated attention mechanism with four
different models in the task of differentiating between the three
ASD subgroups: AD, AS, and HFA using either motion or
speech modality.
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TABLE II
EXP 1: MODEL COMPARISON (WE COMPARE THE PERFORMANCES OBTAINED BETWEEN M1, M2, M3 AND OUR PROPOSED IM-ABLSTM. WE ALSO EXAMINE

THE MODEL WITH DIFFERENT CONTEXT WINDOWS SIZE FROM 0 TO 4 FOR BOTH SPEECH MODALITY AND MOTION MODALITY). THE RESULT WITH (.)* IS THE

HIGHEST RESULT IN EACH MODALITY

� M1-SVM: Instead of using BLSTM to model the progres-
sion of either one of the interlocutor’s behavior, we use
statistical functional method to characterize the overall pro-
gression and train a SVM model to differentiate between
the three ASD subgroups. Here, we use 9 different statisti-
cal functional encodings, include mean, std, max, min, me-
dian, 25th-percentile, 75th-percentile, 1st-percentile and
99th-percentile.

� M2-Mean-Pooling BLSTM:
Without integrating interlocutors‘ information, we use ei-
ther one of the interlocutor’s vocal/motion BLSTM with
mean pooling to differentiate between the three ASD sub-
groups

� M3-Self-Attentional BLSTM:
Without integrating interlocutors‘ information, we use
the participant’s vocal/motion BLSTM with self-attention
learning mechanism to differentiate between the three ASD
subgroups.

� Interlocutor-Modulated Attentional BLSTM:
Considering both interlocutors‘ behaviors to emphasize the
important segments, we use either one of the interlocutor’s
vocal/motion BLSTM with our proposed “interlocutor-
modulated attentional mechanism” to differentiate be-
tween the three ASD subgroups.

We further consider the effect of using context windows in
expanding our turn-level representations. We experiment context
window of size from 0 to 4 in experiment 1. For example, the
context window size “n” in Table II means, for the input at
t-th timestep, we concatenate the original turn-level represen-
tation from the timestep t-n to timestep t. Figure 3 shows the
detail attention mechanism architecture of M3 and our proposed
models.

2) Experiment 2. Multimodal Fusion: We evaluate different
multimodal fusion methods on the task of differentiating the
three ASD subgroups.

� Baseline: The multimodal method previously proposed by
Chen et al. [42] to perform recognition by computing
dyadic low-level behavior descriptors on the same dataset

� M1-Decision Fusion: In experiment 1, both the Motion
M1 and Speech M1 can output the decision score on
each of the subgroup class based on the trained SVM
model. Under the same experiment setting, we add the
output decision score between the two models and per-
form fusion recognition. We consider different fusion pairs
between the two modality, including “part(sp)+invt(m),”
“part(sp)+part(m)”, “invt(sp)+part(m)” under this experi-
ment setting.

� Multimodal IM-aBLSTM (proposed):
Our Multimodal IM-aBLSTM is composed of three differ-
ent sub-nets, including a Speech-IM-aBLSTM, a Motion-
IM-aBLSTM, and a Speech-Motion Fusion DNN. Here,
we freeze the best performing Speech-IM-aBLSTM and
Motion-IM-aBLSTM according to the result in experiment
1 and train the Speech-Motion Fusion DNN by inputting
the 2nd layer prior to softmax from both model. We also
consider all different fusion pairs between the two modal-
ity, including “part(sp)+invt(m),” “part(sp)+part(m)”,
“invt(sp)+part(m)” and “invt(sp)+invt(m)” under this ex-
periment setting.

3) Other Experimental Parameters: In this work, we perform
5-fold cross-validation for both GMM Fisher Vector encoding
and IM-aBLSTM on our dataset to evaluate the model’s perfor-
mance, i.e., there are 48 training samples and 12 testing sample
for every cross-validation fold. The final testing result is derived
by accumulating the prediction result on overall testing data
in each of the folds. In other words, in order to prevent issue
of overfitting, we look for a general well-performed parameter
setting across 5 different cv folds. Under this setting, testing data
would be always guaranteed to prevent from involving in the
training process at any stage. The fusion result is also examined
in this experimental setting. We freeze the model in each CV
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TABLE III
EXP 2: MULTIMODAL FUSION RESULTS (WE COMPARE DIFFERENT

FUSION MODEL BETWEEN M0, M1 AND OUR IM-ABLSTM.
DIFFERENT PAIRS OF BEHAVIOR COMPOSITION ARE EXAMINED

TO ACHIEVE THE HIGHEST PERFORMANCE)

TABLE IV
PERFORMANCE ON EACH OF CV FOLDS: UNDER THE 5-FOLD

CROSS-VALIDATION SCHEME, WE REPORT THE RESULT OF THE UAR ON THE

TESTING SET IN EACH FOLD. WE PRESENT THE SPEECH IM-ABLSTM(PART)
WITH UAR 0.633, MOTION IM-ABLSTM(INVT) WITH UAR 0.534 AND

MULTIMODAL FUSION RESULT WITH UAR 0.688

loop and redo the inner CV loop for the fusion model. Therefore,
in this fashion, Table IV shows the testing result on 5 different
folds by using 3 different models, and testing data in each fold
would always be guaranteed to prevent from involving in the
training process. We use the unweighted average recall (UAR) as
our evaluation metric. Compared to conventional accuracy, the
UAR metric is a better metric for evaluating the performance
of the model on imbalanced data. For example, the baseline
performance for random guessing to the majority class (AD)
would lead to an UAR of 0.333.

The BLSTM is trained with a fixed length (51 time-steps),
which is the maximum number of turn-takings that occurred
between the investigator and the participant in our dataset. We
zero-pad those sessions with fewer than 51 turn-takings events.
For the Speech-IM-aBLSTM, the number of hidden nodes in the
BLSTM is 128, 64 nodes for the forward LSTM and 64 nodes for
the backward, the att-fc layers in IM-attention mechanism have
128 nodes and the sp-fc1, sp-fc2 and sp-fc3 have 64, 16,16 nodes.
For the Speech-IM-aBLSTM, the number of hidden nodes in
the BLSTM is 16, 8 nodes for the forward LSTM and 8 nodes
for backward, the att-fc layers in IM-attention mechanism also
have 16 nodes. In the training procedure, we set the dropout
ratio to 0.1 in both the speech and the motion model. We choose
batch size 5, learning rate 0.01 with Adamax optimizer [61],
cross-entropy is used as our loss function with 30 epochs when
learning our proposed network structure. For each model, we
examine 20 different random seeds and present the highest result
in Table II. With the same setting, we freeze the modality in each

CV loop and redo the inner CV loop for the fusion model. We
use Pytorch [62] toolkit to build our network.

As an extension to our previous work [43], we clarify the
differences of experimental detail between these two papers.
First, we use the 5-fold cross-validation in this paper instead
of using the leave-one-out scheme in the previous one to adjust
the model’s parameters. Under the 5-fold cross-validation, we
completely leave out the testing set and only use the training
data to build GMM and fisher vector encoding in this paper.
In other words, we modify the original encoding method [43],
in which we perform the unsupervised GMM on the whole
dataset. By using the nested cross-validation pipeline, our results
are less prone to issue of overfitting. Third, we have adjusted
IM-attention architecture and utilize the context window in this
paper. Therefore, the performance in previous work can not be
directly compared with the performance in this paper.

B. Experiment Result and Analysis

1) Analysis on Model Performance: Our proposed multi-
modal IM-aBLSTM achieves overall the best performance at
66.8% UAR on the three ASD subgroup classification task. It
outperforms the previous multimodal method presented by Chen
et al. by 14.3%. Furthermore, it also outperforms the simple
M1-SVM statical functional encoding method by 22.2%. The
fusion between different modality and jointly considering both
interlocutor’s behavior information are both needed to achieve
improved performance in all experimental settings. Under the
M1 experiment setting, the M1-fusion result in Table III shows
that the fusion model can improve the performance by 3.6 %
when compared to the results of using only the investigator’s
motion M1-SVM in table II, and it achieves an overall 43.6%
UAR. Similarly, with our proposed experimental setting, the
speech-motion fusion DNN in the proposed multimodal in-
terlocutor also demonstrates improved classification rates by
combining the two different modalities and improves 3.5% when
compared to use only the speech-IM-aBLSTM.

There are three important findings based on the result in
experiment 1. First, the participant‘s vocal behavior can provide
more discriminative information than the investigator’s vocal
behaviors for speech modality. This result, however, is not the
same between the two different modalities. In fact, we observe an
opposite result in the motion modality that the investigator‘s ges-
tural behaviors contain more discriminative information about
the three subgroups when compared to the participant’s motion
behaviors. Specifically, the participant’s speech IM-aBLSATM
can achieve overall the best performance at 63.3 % UAR and
outperforms the investigator’s speech IM-aBLSTM by 21.5 %.
The investigator’s motion IM-aBLSATM has the highest perfor-
mance at 53.4 % UAR and outperforms the participant’s motion
IM-aBLSTM by 11%.

Second, we generally observe that the information in context
windows is required for both speech and motion modality to
achieve higher performance. In specific, the participant’s speech
IM-aBLSATM needs a longer context window size of 4, and in-
vestigator’s motion IM-aBLSTM uses a shorter context window
size of 3.
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Fig. 4. Learning Curve on Each of CV Folds: Under the 5-fold cross-validation scheme, we present the UAR curve during the training procedure (30 epochs) in
each fold. The two proposed models are presented: the Speech IM-aBLSTM(part) with UAR 0.633 and the Motion IM-aBLSTM(invt) with UAR 0.534.

Third, when comparing M2, M3 and our model, the re-
sult of ours shows that integrating interaction relationship be-
tween dyad using our proposed IM-attention mechanism, which
reweights the overall time progression, is crucial for improv-
ing the overall classification performance in both speech and
motion modality. However, it is interesting to see that M2
mean-pooling BLSTM model sometimes performs better than
M3 self-attentional BLSTM model. It suggests that it is the
interactive dependent phenomenon between interlocutors that is
important in deriving the attention weights, and our proposed use
of the IM-attention mechanism in our structure is demonstrated
to be effective in learning the appropriate attention weight to
improve the performance comparing to the conventional atten-
tion mechanism. In specific, when using the participant’s vocal
behavior as input in speech modality, our model outperforms the
M2 by 4.1%, and it also outperforms the M3 by 4.5%. For using
the investigator’s motion behavior features as input in motion
modality, our model outperforms the M2 by 2.7%, and it also
outperforms the M3 by 6.8%.

2) Analysis of Model Training: In this part, we evaluate the
model training detail of our proposed Speech IM-aBLSTM(part)
and the proposed Motion IM-aBLSTM(invt). In Figure 4, we
can see that both of the models generally converge around 20
epochs, where the training data can approach an UAR close to
1.0 with the testing data achieves around 0.5 ∼ 0.6. In Table IV,
we present the corresponding testing result in different cv folds.
We can observe that the cv folds 3 and 4 have the worst
performance among all the training folds for both modalities.
However, both of the cv folds can be improved with multimodal
fusion. Although the Motion-aBLSTM only achieve UAR at
0.534, we also observe its complementary nature that helps with
the improvement for cv fold 0, 3 and 4.

Due to the fact that the performance of the neural network
model would change with different initialization and different
batch-wised update, we test with 20 different random seeds. In
these experiments, our Speech IM-aBLSTM results in a std.
of 0.068, the Motion IM-aBLSTM has a std. of 0.059 and the
Multimodal IM-aBLSTM’s std. is 0.079. While being relatively
stable, we think that the stability can be further improved in

our future work by using the data augmentation method like
dropping the utterance with a certain probability and using the
domain adaptation method on other interaction part in ADOS.

3) Analysis of IM-Attention Mechanism: In Figure 4, we
show some examples of our learned IM-attention weight on se-
lected data samples. Based on the attention weights on different
time steps, we can observe that attention weights in most of the
samples are highly concentrated. Since the interaction process is
not easy to discern manually, our attention mechanism provides
a possible interpretation by highlighting the important part with
high discriminative information. Therefore, we further analyze
whether the speech and the motion LLD features on these highest
attention segments within the Emotion part of the ADOS would
behave differently among different ASD subgroups. By zooming
in on these learned high IM-attention regions, we can safely
assume that the LLD features in the selected turns would contain
enough discriminative information between subgroups.

We calculate the functional value, including avg, std, max and
min, on frame-level LLD features in order to provide an intuitive
insight for understanding the behavior during the selected high
attention turns. We examine the value and investigate the dis-
tribution differences between groups. Specifically, two-sample
t-tests are used to investigate whether there are any significant
differences in the functional values between three different pairs
of subgroups, i.e., AD-AS, AS-HFA and AD-HFA. We list the
features resulting in statistically significant differences (p-value
below 0.05) between the pair of the groups in Table IV. For
speech modality, we observe that the participant’s “average” and
“median” value of pitch on the selected turn shows significantly
different between HFA-AD and HFA-AS. In other words, the
subjects of HFA tend to speak with a higher value of pitch
compared to either AS or AD.

In terms of motion features, we find that different angles of
body joints correlate to the differences between ASD subgroups.
Most of the head orientation-based LLD features, including
b-delta, b-delta2, e and h, all demonstrate significant differences
between the AD-HFA pair. In specifics, the wider range and
faster head movement from the investigator would indicate that
he/she is interacting with subjects of the AD. Furthermore, we
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Fig. 5. Attention Weights Visualization on Selected Test Samples: We plot 2 different aspects of attention weight distribution in the same session. The marks
of the peaks indicate the local maximum of high similarity behavior measured by our automatically learned network. Based on the figure, our attention weight
shows a peaky characteristic. We further examine the behavior feature at the highest attention (the peak) between different subgroups in Section III.B.3 and explore
important emotion topic using WCI metric introduced in section III.B.4. Besides, we also observe the coherence between 2 different networks in the figure. A
further complete analysis is done by using the confusion matrix in Figure 6.

also observe that the arm movement related LLD features like d,
d-delta, d-delta2 show significant differences when comparing
HFA with the other two subgroups. This result can be interpreted
as a situation that the investigator uses hand as body language
very often during his/her conversation or making notes during
the assessment. The analysis results about the motion features
are quite interesting, it indicates that while the vocal character-
istics of the ASD subjects intuitively show the types of ASD
symptoms, it is the investigator (the one who interacts with the
ASD subject) would display gestural differences indicating the
particular ASD subgroup - further underscoring the importance
in analyzing the social back-and-forth aspect of an ASD subject
with his/her interacting partners.

Furthermore, we analyze the attention weight distribution
between the two modalities. We first identify the peaks of the
learned attention weight of each modality for each sample. We
would like to examine whether each of the behavior modalities
is maximum within the same conversation segment. We define
a conversation segment according to the 4 emotion topics that
the investigator asks the participant to talk about. The nearest
peaks pair can be analyzed with totally 16 pairs on the topic
matrix, i.e., if the nearest speech attention peak is at the emotion
topic “Angry” and the nearest motion attention peak is at “Sad,”
then the “Angry-Sad” is the nearest pair for the data sample.
We accumulate the sample of all pairs and present the result as a
confusion matrix shown in Figure 5. From the result, we observe
that most of the data samples have the nearest peaks between
speech and motion occurring in the same topic, i.e., indicating
that these two modalities’ specific “hot spots” tend to come from
the same conversation segments.

4) Analysis on the Emotion With Attention Centroid: In order
to identify the important segments within the Emotion part of
the ADOS that are useful in differentiating the subgroups, we
calculate the attention centroid by weighting the turn index
with the attention weight and identify which emotion topic
is important according to this weighted centroid index(WCI)

Fig. 6. Emotion Topic Analysis: The Position of the Nearest Pair of Peaks
between Two Modalities (We display the speech-motion emotion topic pair with
a confusion matrix. There are 52.7% of the data lying on the diagonal of the
topic matrix showing that most of the nearest peaks occur in the same topic).

for each sample. By introducing the WCI, we define it as an
index to highlight the important emotion subpart during the
interaction. In specific, with the total timesteps T = 51 and the
stored attention value αt, our WCI can be derived from

WCI =
T∑

t=1

αt ∗ t

Since
∑T

t=1 αt = 1, the value of WCI would be guaranteed to
be 1 to 51. The highlighted emotion part can then be identified
from the position of WCI with the recorded time. We present
corresponding highlighted emotion in Table V and Table VI by
using speech WCI and motion WCI separately. In each table,
we report the accumulated number of samples for each emotion
topic. Based on the result of speech-IM-aBLSTM, we observe
that the less important part for participant’s vocal behavior is
“happy,” and the most important part is “angry” in differentiating
the three subgroups. For the motion-IM-aBLSTM, the model
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TABLE V
STATISTICAL SIGNIFICANCE LLD FEATURES BETWEEN SUBGROUPS: WE

PERFORM TWO-SAMPLE T-TESTS ON THE STATISTICAL FUNCTIONAL FEATURE

BETWEEN PAIRS OF SUBGROUPS. THIS TABLE LISTS THE LLD
FEATURES WITH P ≤ 0.05

TABLE VI
EMOTION TOPIC ANALYSIS: WCI IN SPEECH-IM-ABLSTM

focuses on the “scared” as the most important part, and the less
important parts are “happy” and “sad”. It is intriguing to see
that both the modalities consider the “happy” part as the least
important segment. The result implies that participant’s (ASD
subject) self-disclosure on their negative emotion experiences
would result in subtly different behavior manifestation between
the three subgroups; this behavior differences not only come
from the participant (the ASD subject) but also are evident in
the reciprocal gestural behaviors of the clinical investigators.

Our finding suggests that self-disclosing the topic of negative
emotion is not only suitable for observing the differences be-
tween TD and ASD [26] but also is an important method in elic-
iting the subtle behavior differences between ASD subgroups.
We hypothesize that this result may be connected to the ASD
subject’s life experience. The frequency for ASD individuals on
experiencing negative emotion has shown to be more often than

TABLE VII
EMOTION TOPIC ANALYSIS: WCI IN MOTION-IM-ABLSTM

experiencing positive emotion [63], [64]. Moreover, appropri-
ately regulating the emotion experiences of anger and anxiety are
considered as one of the key deficits in ASD individuals [23];
the cause of the emotion disturbance is often related to their
maladaptive emotional regulation strategy [23], [27]. Although
more detailed clinical study is needed to further understand the
relationship between negative emotion episodes and subtle be-
havior differences when disclosing these life experiences among
different subtypes of ASD, our research has added to a consistent
finding that the differential diagnosis of ASD may depend on the
utilization of discussing personal negative emotion experiences.

IV. CONCLUSION

Developing objective methods to elicit and measure the dif-
ferences between ASD subgroups remains a major challenge in
performing differential diagnoses and advancing targeted inter-
vention. In this work, we propose a Multimodal IM-aBSLTM
to model the vocal behaviors and body movements in ADOS
interview Emotion part for differentiating the three ASD sub-
groups (AS, AD, HFA). The Multimodal IM-aBLSTM embeds
the interlocutors’ behavior coordination using the interlocutor-
modulation attention mechanism, where it automatically learns
to emphasize the important segments during the interaction
progression by jointly considering the dyad together. We use
two different networks, a Speech-IM-aBLSTM and a Motion-
IM-aBLSTM, to model the speech and gestural movement sep-
arately and a fusion network is used to combine the information
to perform the final classification. Our method achieves an
overall performance of 66.8 % UAR for the classification task.
We further analyze and understand the attention mechanism
from those highly weighted segments. Based on the ADOS
procedure, our attention weights suggest that the participant’s
self-disclosure vocal behavior on the anger and the investigator’s
body movement in the fear part shows the differences between
subgroups. We speculate there exists a connection between
the behavior manifestation with their emotion experience and
internal emotional regulation strategy.

In order to understand the exact question-answer content
during these self-disclosing emotion episodes, our immediate
future work is to extend the framework on studying the lexical
content of the dialog. The word usage can reveal more inti-
mate emotion and high-level complex attitude toward negative
emotion e.g., hesitation, insecure and unwilling attitude. Aside
from considering different frameworks, this work also provides a
possible direction for redesigning a more targeted experiment to
study the subgroup differences from the perspectives of sensitive
emotion experience and issues of emotion regulation. We hope
to continue advancing various signal processing and machine
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learning frameworks to quantitatively investigate issues around
human behaviors and mental health applications [65], [66].
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