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ABSTRACT

Emotion is a core fundamental attribute of humans. Us-
ing music to induce emotional responses from subjects to
better facilitate human behavior shaping have been effective
across domains of health, education, and retail. Computation-
ally model the musically-induced emotion provides necessary
content-based analytics for large-scale and wide-applicability
of such human-centered applications. In this work, we pro-
pose a relationship neural network architecture to learn to
regress the induced emotion attributes with an auxiliary task
of genre classification. Our proposed Genre-Affect Relation-
ship Network with homoscedastic uncertainty weighting em-
beds the relationship between affect and genre as tensor nor-
mal prior within task-specific layers; the architecture is opti-
mized further by incorporating task-specific uncertainty. The
proposed architecture achieves a state-of-art 0.564 average
Pearson correlation computed over nine induced emotion rat-
ings in the Emotify database. Furthermore, we provide an
analysis to understand the relationship between the induced
emotions of these musical pieces and their associated genres.

Index Terms— multi-task learning, induced emotion,
music, homoscedastic uncertainty, relationship network

1. INTRODUCTION

Emotion drives our decision making and further motivates our
behaviors and actions [1, 2]. The relationship between music,
i.e., a cultural activity using sound as the medium, and emo-
tion, i.e., a fundamental human internal attribute, has been
extensively studied by music psychologists - demonstrating
that music is indeed capable of evoking human’s internal af-
fect states [3, 4] (exemplary illustration is shown in Figure 1).
In fact, this effect has already found its use cases in human-
centered applications, e.g., in fields of health, marketing, and
education. In musical therapy, appropriate exposure to music,
which induces positive emotion, has been shown to achieve
therapeutic effect in addressing issues of physical, emotional,
cognitive, and social for those individuals in need [5]. Mar-
keting researchers have further shown that the environmental

Fig. 1. A causal chain from music, emotion, to behavior.

background music plays a significant role in triggering pur-
chase intentions [6]. Finally, learning efficiency can also be
improved with proper musical exposure in order to relax stu-
dents in stressful situations [7].

This vast opportunity in using music across a wide range
of human-centered applications further emphasizes the im-
portance of developing computational methods to recognize
the induced emotion with content-based music analytics. The
Geneva Emotional Music Scale (GEMS) [8], i.e., numerical
emotion attributes profile for music, is shown to offer a better
approximation to humans perception in representing the in-
duced emotion in music as compared to the general valence-
activation plane [9, 10, 11]. Several past works have demon-
strated that GEMS scales can be automatically computed us-
ing features in music. For example, Aljanaki et al. conducted
a comprehensive study comparing correlations obtained us-
ing different low-level feature sets [12]. Jakubik et al. ex-
perimented with different sparse coding approaches to derive
feature representations [13] and has recently extended the fea-
ture learning approach using a gated recurrent neural network
(GRU) to improve accuracies further [14].

Studies have shown that the types of musically-induced
emotion felt depend also on multiple other meta factors,
e.g., genre of the music, age and gender of the listener, etc
[15, 16, 17]. Most of the existing works focus on regress-
ing each of the GEMS’ emotion attribute in isolation without
considering other joint factors nor the correlated structures of
GEMS multi-attribute ratings. Some but limited works has
attempted to incorporate genre as a separate module in their
emotion recognition algorithm [18, 19, 20]. In this work,
we propose a novel Genre-Affect Relationship Network to au-
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Fig. 2. Distribution of genre for each GEM emotion attribute

tomatically learn to regress the nine GEMS scales together
by leveraging its multi-attribute annotations and the musical
genre jointly. The proposed Genre-Affect Relationship Net-
work introduces the use of tensor normal prior within a multi-
task deep learning framework to model the complex relation-
ship between features, classes, and labels with an additional
homoscedastic weighting parameter applied to the main task
(emotion regression) and the auxiliary task (genre detection).

The regression experiments are carried out on the Emotify
database [8]. We obtain a Pearson correlation of 0.564 (aver-
age of nine emotions), which is an absolute improvement of
0.149 over single-task learning. Comparing to other exist-
ing state-of-the-art algorithms on the same task, our accura-
cies is 5.43% higher than the current best result [14]. Finally,
we provide an analysis on the relationship between genre and
emotion by examining the shared representation.

The rest of the paper is organized as follows: Section 2
will introduce our framework along with the database. Sec-
tion 3 will summarize our experimental results and discus-
sions. Section 4 is conclusion and future work.

2. RESEARCH METHODOLOGY

2.1. Database
We use the Emotify music database in this paper [8]. Emotify
is a well known database collected to study the musically-
induced emotion. The annotators are asked explicitly to an-
swer separate questions about the emotions felt and the emo-
tions perceived in music. The exact annotation scheme is
based on GEMS, where the database collects over 8407 com-
ments on 400 tracks of music from 138 unique artists. The
400 musical pieces are gathered from four distinct genre
classes (classical, rock, electronic, and pop).

In this work, the nine emotions from the middle level
of GEMS hierarchy are used. These middle-level categories
are: amazement, solemnity, tenderness, nostalgia, calmness,
power, joyful activation, tension, and sadness. The final label
of a song is a nine-dimensional vector with each dimension
has value ranging from 0 to 1 (indicating the relative strength
of that particular emotion), and the sum of the nine dimen-
sions equals to 1. An example of the ground-truth label for
track ID34 is shown in Figure 3. A plot on the percentages of
each of the four different genres against the most prominent
emotion of each song is shown in Figure 2.

Fig. 3. Exemplary nine GEMS emotion attribute for a track

2.2. Audio Feature Extraction

We extract a total of 6552 audio features for each track us-
ing the opensmile toolbox [21]. This particular set of features
includes a combination of low-level and supra-segmental fea-
tures (e.g., chroma features, MFCCs, and energy, etc.) with a
variety of statistical functionals applied to them (e.g., mean,
standard deviation, inter-quartile range, skewness, kurtosis
etc.). It has been shown to provide good performances in tasks
of music emotion recognition [12].

2.3. Genre-Affect Relationship Network
The complete architecture of our Genre-Affect Relationship
Network (GARN) is shown in Figure 4. Overall the archi-
tecture is based on a multi-task optimization approach using
shared fully-connected layers with task-specific layers. We
additionally incorporate homoscedastic uncertainty weight-
ing and tensor normal prior in the task-specific layers to
model the relationship between genre and affect. We will
briefly describe each of the components below.

2.3.1. Multi-task Deep Neural Network

The GARN is based on multi-task learning structure, where
the main task is the nine-attributes emotion regression and the
auxiliary task is the four-class genre classification. We learn
a shared representation between these two tasks using fully-
connected layers (node size: 6552, 4000, 1000) then task-
specific layers (node size: 1000, 400), and a final output layer
(node size 4 for genre and size 9 for emotion).

The 4000-node hidden layer used in the fully-connected
layer is learned first using a sparse autoencoder [22] with the
following loss function, L′Sparse:

L′Sparse = LAuto + β
∑
i

(ρ log
ρ

ρ̂i
) + (1− ρ) log 1− ρ

1− ρ̂i
(1)

where LAuto is the standard mean square error reconstruction
loss, ρ is a parameter indicating the desired average activa-
tions in the hidden layer, and ρ̂i is the average activation of
i-th neuron in that layer over the whole dataset. This au-
toencoder encourages neuron activations in hidden layer to
be sparse, and β controls the amount of sparsity (β = 10 and
ρ = 0.05 are used in this work).



Fig. 4. A schematic of our proposed Genre-Affect Relationship Network architecture

Then the fully-connected and task-specific layers are then
learned using the following loss function:

λr
N∑
i=1

‖ yri − f(xi,W r) ‖2−
N∑
i=1

∑
a∈A

λayai log(p(y
a
i ) | xi,W a)

(2)
where the first term is the mean square error loss with respect
to the nine GEM emotion regression (yri indicates the nine
emotion attribute vector for sample i, xi is the feature inputs,
W r are weights used to regress emotion, N is the number
of samples). The second term corresponds to the cross en-
tropy loss used for the four genre class detection (yai indi-
cates one hot encoding of four genre classes for sample i, W a

are weights used to detect genre types). λ∗ controls weighted
contribution between the main vs. the auxiliary task in this
multi-task formulation (λr + λa = 1).

The choice of λ is mathematically equivalent to control-
ling the homoscedastic uncertainty in this multi-task predic-
tion problem [23]. The homoscedastic uncertainty in the
multi-task predicted outputs can be written as the following
overall loss function:

L(W,σ1, σ2) =
1

2σ2
1

L1(W ) +
1

2σ2
2

L2(W ) + logσ2
1σ

2
2 (3)

where L1, L2 are the losses with respect to the main and
the auxiliary tasks. σ2

1 , σ
2
2 are the homoscedastic uncertainty

(σ2
∗ =

1
2λ∗

). By setting a larger λ for our main task, we effec-
tively optimize the learning to reduce the uncertainty in our
prediction for the main task as compared to the auxiliary task.

2.3.2. Relationship Embedding using Tensor Normal Prior

In order to learn the task relationship in our network param-
eters for all T tasks, we apply the tensor normal prior in
the task-specific layers within our multi-task learning struc-
ture [24]. We construct the l-th layer parameter tensor as
W = [W 1,l; ...;WT,l] ∈ RD

l
1×D

l
2×T . The set of parameter

tensors of each task-specific layers is indicated as W l where
W = {W l : l ∈ L}. The Maximum a-Posteriori (MAP) es-
timation of network parameters W given training data X and
label Y is the following:

p(W |X,Y ) ∝ p(W ) · p(Y |X,W )

=
L∏
l

p(W l) ·
T∏
t=1

Nt∏
n=1

p(ytn|xtn,W l) (4)

the prior, p(W ), of the parameter tensor for each layer l is
independent of the other layers, i.e., li 6= lj . The network
parameters when sampled from the prior, tasks become inde-
pendent of each other. These independent assumptions lead
to the factorization of the posteriori in Equation 4.

The prior part p(w) in Equation 4 is the key to enable
relationship learning due to its ability to model the relation-
ship across parameter tensors. We assume that the prior distri-
bution for the l-th layer parameter tensor in the task-specific
layer as tensor normal distribution:

p(wl) = TNDl
1×Dl

2×T (O,∧
l
1,∧l2,∧l3) (5)

where ∧l1 ∈ RD
l
1×D

l
1 , ∧l2 ∈ RD

l
2×D

l
2 , and ∧l3 ∈ RT×T are

feature covariance, class covariance, task covariance, respec-
tively. By incorporating tensor normal prior into the prior
leading to the final MAP estimation of the network, in which
the parameters W can be rewritten as a regularized optimiza-
tion problem with additional terms add to Equation 2:

Equation 2 +

1

2

∑
l∈L

(vec(W l)T (∧l1:K)−1vec(W l)−
K∑
k=1

Dl

Dl
k

ln(| ∧lK |)

(6)

where Dl =
∏K
k=1D

l
k and K = 3 is the number of modes in

parameter tensor W; ∧l1:3 = ∧l1 ⊗ ∧l2 ⊗ ∧l3 is the Kronecker
product of the feature covariance of layer l, ∧l1, class covari-
ance ∧l2 ,and task covariance ∧l3. Equation 6 is the complete
loss function used in our proposed Genre-Affect Relationship
Network (GARN) for recognizing emotion in music.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup
We conduct our musically-induced emotion regression task
on the Emotify database. The evaluation scheme is based on



Table 1. A summary of the accuracies (Pearson’s r) of our proposed Genre-Affect Relationship Network (GARN) with baseline
models and state-of-the-art methods on Emotify dataset

Method STL STL gnr MTL 1+1 GARN MP+harm Autoencoder SEGru+SVR
Amazement 0.15 0.23 0.26 0.32 0.16 0.29 0.29
Solemnity 0.36 0.39 0.52 0.57 0.43 0.50 0.53

Tenderness 0.47 0.50 0.54 0.61 0.57 0.54 0.53
Nostalgia 0.47 0.50 0.55 0.60 0.45 0.50 0.54
Calmness 0.49 0.51 0.59 0.61 0.60 0.56 0.56

Power 0.51 0.49 0.59 0.62 0.56 0.53 0.56
Joyful activation 0.55 0.56 0.57 0.62 0.66 0.53 0.66

Tension 0.37 0.46 0.56 0.60 0.46 0.48 0.50
Sadness 0.36 0.38 0.52 0.53 0.42 0.33 0.42
Average 0.414 0.447 0.522 0.564 0.478 0.473 0.510

leave-one-artist-out cross validation. Each of the validation
set includes the amount of songs of each artists. The accuracy
measure used is the average of Pearson correlation computed
for each of the nine emotion labels. We also construct the
following baselines as comparison (a graphical illustration of
the three additional baseline structures is also shown in Figure
5).

• Single-task Learning (STL): Each emotion attribute
is regressed using a separate neural network (i.e., nine
separate models). The core STL network structure is
the same as our proposed model without the auxiliary
task that produces a single regression output.

• STL with Auxiliary Task of Genre: STL gnr: Each
emotion attribute is regressed using a separate neural
network. The network structure is the same as STL
with an auxiliary task-specific layer responsible for 4-
class genre classification.

• Multi-task Learning 1+1 (MTL 1+1): This is the
multi-task learning structure (jointly regressed on nine
labels together) without applying the homoscedastic
uncertainty weighting and tensor normal prior.

3.2. Experimental Results
Table 1 summarizes our results. The overall best performance
obtained is our proposed GARN, which achieves an aver-
age Pearson correlation of 0.564, and by comparing GARN
to MTL 1+1, GARN improves 4.22% on average. This in-
dicates the importance of relationship learning in the task-
layers using tensor normal prior and task-specific uncertainty
weighting between affect and genre. Furthermore, our ex-
periments show that simultaneously regressing on nine at-
tributes help leverage the correlated structures between the
emotion annotations; for example by comparing MTL 1+1 to
STL gnr, MTL 1+1 outperforms single-task based STL gnr
by 11.7% on average. This demonstrates the efficacy in learn-
ing multiple emotion attributes by exploiting their correlated
structures. The improvement in the use of genre as an aux-
iliary task is also evident by simply comparing STL with

STL gnr, where STL gnr improves the results by 3.3%.
3.2.1. Comparing to Other Methods

We further compare our proposed Genre-Affect Relationship
Network with various other methods recently proposed on the
same regression tasks for the Emotify database. In specifics,
we compare with three different methods: MP + harm, Au-
toencoder, SEGru+SVR. MP + harm is a recent work on re-
gressing the same nine attributes by combining a compre-
hensive set of low-level features from several state-of-the-
art audio feature extraction toolbox with a new set of har-
monically motivated features [12]. Autoencoder is another
work on comparing five sparse coding methods and demon-
strates that sparse autoencoder achieves the best performance
for the same regression task [13]. SEGru+SVR introduces
a new feature representation learning approach based on se-
mantic embedding using GRU, and they demonstrate the cur-
rent state-of-art performance by using SEGru-features with
support vector regression (SVR) [14]. In each of these works,
we present their best correlation obtained in Table 1.

Comparing to these recent works on the same nine emo-
tion attributes regression task, our proposed method outper-
forms all of these methods testing on the same dataset (i.e.,
improvement of 8.56%, 9.11%, 5.44% comared to MP+harm,
Autoencoder, and SEGru+SVR, respectively). Overall, the
only class of emotion that GARN is lower than those of other
methods is “joyful activation”, which is mostly distinctively
different all other more complexly-intertwined labels. By
leveraging relationship learning between affect and genre and
jointly learn to regress and classify the nine emotion attributes
and the four genre classes, our proposed GARN architecture
can better handle the complex emotion attributes and, hence,
achieves the current better performances over the previously
proposed methods.

3.2.2. Analysis of Genre and Affect using GARN

In order to further visualize the relationship between genre
and affect, we extract the representation of our GARN at



Fig. 5. (1) STL: single-task learning with nine separate emo-
tion models (2) STL gnr: STL with auxiliary task of genre
detection (3) MTL 1+1: multi-task learning structure without
embedding tensor normal prior and uncertainty weighting (4)
Genre-Affect Relationship Network: our proposed model

the last shared layer before the task-specific layer. We visu-
ally represent each music’s representation by projecting onto
a 2-dimensional plane using Principal Component Analysis
(PCA). Figure 6 shows a projection result for each of the four
genre classes, where the color indicates the most prominent
emotion class for that music sample.

There are several interesting observations to be noted. For
example, Figure 6-a shows a spread of emotion for classical
music. Classical music is a genre that has been developed for
hundreds of years. Every era present its own unique charac-
teristics, e.g., romantic period pays attention to personal emo-
tion expression, which often leads to the induced emotion of
“nostalgia” or “sadness” (most known in the compositions of
Chopin). Due to the longer history in its genre development,
we also observe a relatively richer and complete set of emo-
tion in classical music. As for rock music, this genre has been
known to be good at inducing “joyful activation”. This effect
is also evident in Figure 6-b. As for electronic music, more
samples concentrate around the top-right region, indicating
a “tension” emotion. Lastly, “tenderness” and “sadness” are
depicted more in the pop music genre.

Another thing to note is from Figure 6 (especially in
pop music genre). The samples with most prominent emo-
tion classes of “tenderness”, “nostalgia”, and “calmness” are
heavily clustered with each other. These are also the classes
where simple multi-task learning (MTL 1+1) does not out-
perform method such as SEGru+SVR (Table 1). The rela-
tionship learning utilized in our proposed GARN model the
subtly connected relationship between these classes provid-
ing additional discriminability in the feature spaces - achiev-
ing about 10% higher correlation than previous methods in
these highly-overlapping emotion attributes.

4. CONCLUSION
Emotion can be induced properly with music and translates
into effect of human behavior shaping. Computationally rep-
resent the induced emotion characteristics in music provides

Fig. 6. This figure shows the 2-D projection (PCA) of each
sample’s representation derived from GARN with respect to
the 4 genre classes: (a) is classical music, (b) is rock music,
(c) is electronic music, (d) is pop music, respectively.

key enabler to achieve a wider-applicability of using music
as medium in a variety of human-centered applications. Due
the complex manifestation of music as driven by its genre
and intended expression, we utilize a relationship learning
mechanism to propose a Genre-Affect Relationship Network
(GARN) to learn to regress the nine GEMS music emotion
scales. In specifics, GARN is a multi-task learning archi-
tecture with shared representation and task-specific layers,
which we embed tensor normal prior and homoscedastic un-
certainty weighting between tasks of emotion and genre. We
experiment our framework on the Emotify database reaching
an average correlation of 0.564. The framework significantly
outperforms other recent works on the same tasks. Further-
more, we demonstrate differences in the induced emotion be-
tween the four different music genres.

As for future work, firstly, since the complexity in induc-
ing a particular human emotional states varies between dif-
ferent GEMS emotion attributes [13], these dynamics in their
complexity may be better captured by introducing a varied-
length network structure in the task-specific layers. Secondly,
we plan to expand the diversity and the scale of the database
by using this model as a seed to include a wider range of
factors, e.g., listeners profiles, languages and cultural back-
grounds of the music, expended list of genres, etc. Finally,
our goal is understand the mechanistic pathway from musical
exposure, emotional responses, to behavior changes leading
to a better design of human-centered application [25] and ad-
vancing knowledge in mental health and wellbeings [26].
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