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ABSTRACT

Speech emotion recognition (SER) is important in enabling
personalized services and multimedia applications in our life.
It also becomes a prevalent topic of research with its poten-
tial in creating a better user experience across many modern
technologies. However, the highly contextualized scenario
and expensive emotion labeling required cause a severe mis-
match between already limited-in-scale speech emotional
corpora; this hinders the wide adoption of SER. In this work,
instead of conventionally learning a common feature space
between corpora, we take a novel approach in enhancing the
variability of the source (labeled) corpus that is target (un-
labeled) data-aware by generating synthetic source domain
data using a conditional cycle emotion generative adversarial
network (CCEmoGAN). Note that no target samples with
label are used during whole training process. We evaluate our
framework in cross corpus emotion recognition tasks and ob-
tain a three classes valence recognition accuracy of 47.56%,
50.11% and activation accuracy of 51.13%, 65.7% when
transferring from the IEMOCAP to the CIT dataset, and the
IEMOCAP to the MSP-IMPROV dataset respectively. The
benefit of increasing target domain-aware variability in the
source domain to improve emotion discriminability in cross
corpus emotion recognition is further visualized in our aug-
mented data space.

Index Terms— speech emotion recognition, conditional
cycle GAN, cross corpus, data augmentation, transfer learn-
ing

1. INTRODUCTION

Rapid progress in deep learning algorithms is key in driving
advancement of technologies for human-centered services,
e.g., vision-based behavior detection [1], sound-based mul-
timedia applications [2], and natural language understanding
[3]. As these services become more integrated into our daily
life, the ability to automatically sense emotional states has
become a critical component. For example, speech emotion
recognition (SER) technology has enabled many applications,
such as homecare platforms or devices [4], and intelligent
vehicle assistance [5], to become more ubiquitous and per-
vasive. However, the existing emotional speech corpora are

often highly contextualized for specific scenarios or inter-
action settings, which create severe idiosyncratic variations
hindering the generalization of current SER algorithms across
corpora. Developing sophisticated learning algorithms to per-
form unsupervised domain adaptation from existing labeled
emotional corpora to unlabeled databases is crucial to guar-
antee the robustness and ease of wide applicability of SER
systems in real world in-the-wild applications.

In fact, more and more computational studies have started
to investigate different unsupervised learning strategies in
handling the mismatch between emotional corpora to alle-
viate the issue of corpus-specific discrepancy to generalize
SER. A variety of techniques have already been proposed
in the literature, e.g., from simply eliminating cross cor-
pus acoustic feature value differences through normalization
scheme [6] to more sophisticated approaches in deriving
common feature space through domain adaptation [7] or ma-
trix factorization [8]. This problem has also been cast as an
unsupervised transfer learning problem [9, 10] and also as
a multi-task optimization [11]. The current state-of-art ap-
proach is to learn a domain-invariant acoustic representation
for task of cross corpus SER with an adversarial strategy [12].

While many of these past studies have demonstrated
improved cross corpus SER by deriving a generic context-
invariant feature representation, this strategy still suffers from
robustness issues due to its lack of ability to enhance the
data variability in a manner that also achieves source emo-
tion label consistency jointly. Not only these speech emotion
corpora are unique in its own way, most of them are usually
limited in-scale; hence, by directly learning a hidden layer
that is domain invariant between these corpora, its represen-
tational power is likely to suffer from inadequate variability
naturally limited by the amount of available emotional speech
data. Furthermore, by simply ensuring two databases acous-
tic representations align in an overlapping space, it does not
guarantee that similar samples between corpus would have
similar emotion labels; this phenomenon is termed as label
distortion that is especially common and also detrimental
when performing cross corpus unsupervised emotion recog-
nition. In this work, instead of seeking a common acoustic
representation space, we use target-and-source bidirectional
data augmentation as an strategy to increase the variability
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Fig. 1: Architecture of cross corpus speech emotion recognition using our proposed conditional cycle emotion GAN data
augmentation.

in an emotionally consistent manner to improve the emotion
transferability from source (labeled) to target (unlabeled)
dataset.

Specifically, we learn a condition cycle generative adver-
sarial network inspired by works of [13, 14], which learns
a bi-directional mapping function between source and target
data samples with an additional emotion conditional vector
to constraint the generative adversarial training. We then
generate synthesized source domain samples that are target
domain-aware using the proposed conditional cycle emotion
GAN (CCEmoGAN). Further, each of the CCEmoGAN-
generated source domain data sample is assigned with orig-
inal emotion labels on the real source sample from which
it is generated from. After carrying out this data genera-
tion process, we can then easily train a emotion classifier on
the augmented source dataset and directly use this recogni-
tion network to perform unsupervised target domain emo-
tion classification. We evaluate our framework using three
public speech emotion corpora, i.e, the IEMOCAP, the MSP-
IMPROV, and the CreativeIT (CIT). We regard the IEMO-
CAP as the source domain and perform emotion recognition
on the target domains, i.e., the MSP-IMPROV and the CIT.
This data augmentation strategy surpasses the current state-
of-the-art cross corpora method of DANN [12] by 4.85%,
2.94% in valence for the task of using the IEMOCAP model
on the CIT and also using the IEMOCAP model on the MSP-
IMPROV respectively; similar results have been observed in
activation, i.e., 7.03%, 4.8%.

2. RESEARCH METHODOLOGY
In this work, we define source corpus as the dataset with emo-
tion labels (the IEMOCAP), and target corpus as the dataset
without labeling (the MSP-IMPROV and the CIT).

2.1. Databases and Acoustic Features

2.1.1. Acoustic Features:

We extract 1582 dimensional utterance level functional fea-
tures using the openSMILE toolkit [15] with Emo-base con-
fig file. This set has been used as an effective acoustic feature
set in conducting cross corpus SER experiments [16]. Max-

min normalization is applied on all datasets to ensure efficient
training of our conditional cycle GAN data augmentation net-
work and the emotion recognition network.

2.1.2. The USC IEMOCAP Corpus:

The USC IEMOCAP database is an audio-visual English
database [17]. It consists of 5 dyadic sessions with a total
of 10 actors (5 males and 5 females). In each session, these
actors are requested to perform both scripted and spontaneous
dialog interactions. There is approximately 12 hours of data
manually segmented into utterances, where each utterance
is rated by at least 3 annotators on both categorical emotion
labels and dimensional attributes. We use a total of 10039
utterances in this work, and the label of activation and valence
are divided into three classes using the boundary of [0, 2], (2,
4), [4, 5].

2.1.3. The MSP-IMPROV Corpus:

The MSP-IMPROV database is an acted audiovisual corpus
in English [18], which is composed of six sessions with each
session includes two actors (1 male and 1 female). In each
session, actors are set in a context with a designated sentence
that would elicit a target emotion. The database includes
the entire improvisation along with the designated sentence.
There is around 9 hours of data, and all utterances are manu-
ally annotated by at least five annotators following a crowd-
sourcing approach. In this paper, we use 8438 utterances la-
beled with three classes of activation and valence with the
boundary cutoff [0, 2], (2, 4), [4, 5].

2.1.4. The USC CreativeIT (CIT) Corpus:

The USC CreativeIT database is a multimodal affective inter-
action database in English, which consists of dyadic theatri-
cal paraphrase improvisations and 2-sentence scripted plays
[19]. This emotion corpus features the use of Stanislavsky
Active Analysis to elicit naturalistic affective behaviors and
interactions. It includes a total of 16 actors (8 males, 8 fe-
males) forming 8 pairs to engage in 3 to 5 minutes long inter-
actions. Each interaction is rated by 3 raters using continuous-
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in-time annotation scheme on emotion dimensional attributes
(the scale ranges between 1 to -1). There are total 2163 utter-
ances used in this work, which are separated into three classes
using the boundary of [-1, -0.33], (-0.33, 0.33), [0.33, 1].

2.2. Conditional Cycle Emotion GAN Model
In this paper, we propose to use a conditional cycle emotion
GAN to learn a generative mapping function between source
and target to perform source data augmentation. A brief de-
scription of our conditional cycle emotion GAN augmenta-
tion network is below:

2.2.1. Cycle GAN:

Our framework considers a bi-directional mapping between
source and target corpus, two generators are used here.
GS→T generates the synthetic instances from source to target
domain, and GT→S generates from target to source corpus.
The standard Cycle GAN loss L(GS→T , DT ) is defined as
below:
L(GS→T , DT ) = ET∼Pdata(T )[logDT (T )]

+ ES∼Pdata(S)[log(1−DT (GS→T (S)))] (1)

Similar to the GS→T , we form an additional target to source
loss L(GT→S , DS), that GAN loss function:
LGAN (GT→S , GS→T , DS , DT ) = L(GT→S , DS)+

L(GS→T , DT ) (2)

In order to stabilize the training process, we add an extra iden-
tity loss and cycle loss as regularization terms. Identity loss
constraints the transformation of a source instance through
GT→S to be identical to that original source sample. In ad-
dition, cycle consistency loss enforces that after bidirectional
transformation, samples should be identical, which means the
result for each source sample feeding forward GS→T then
through GT→S should be consistent to the original sample.
All the criterion is measured in mean-square error (MSE), and
the losses are defined as:
Lidentity = ES∼PS

[||GT→S(S)− S||2]
+ ET∼PT

[||GS→T (T )− T ||2] (3)

Lcycle = ES∼PS
[||GT→S(GS→T (S))− S||2]

+ ET∼PT
[||GS→T (GT→S(T ))− T ||2] (4)

Table 1: Train and test within each dataset (no transfer), and
the star symbol (*) means training with balanced distribution
by random up-sampling

Activation Valence
DNN* SVM DNN* SVM

MSP-IMPROV 66.42 61.38 53.12 52.24
CreativeIT 48.56 43.54 49.79 38.84

2.2.2. Conditional Cycle Emotion GAN:

First of all, we learn a pre-trained emotion classifier Fs us-
ing the original source corpus to guide the learning process of
the conditional cycle GAN. In order to control how the syn-
thetic samples are being generated from the source-and-target
cycle GAN, we add another hidden conditional vector Z act-
ing as an emotion conditional input for the generator GT→S .
The source and target data are randomly paired in the cycle
GAN training stage with each source sample corresponds to
a specific target sample and vice versa. It means that for that
particular target sample, we could assign the corresponding
source sample’s emotion label as the hidden condition for the
generator GT→S . We define this as the conditional emotion
consistency loss as below:

LCE =
∑
i

yi log(Fs(GT→S(GS→T (Si), Zi)))

+
∑
i

yi log(Fs(GT→S(Si, Zi))) (5)

where i represents the sample index, and Zi is the one-hot
encoded vector corresponding to the annotation of instance
Si from source corpus. To strengthen the conditional hidden
vector Z, we additionally impose a strict constraint that by
giving a random emotion condition to each target samples,
after transforming to source database, it would be mapped to
the same category as dictated by Fs. This random conditional
emotion loss is defined as:

LRCE =
∑
i

yr log(Fs(GT→S(Ti, Zr))) (6)

where Zr, yr represent a random one-hot encoded vector in-
dicating the label for each of the emotion category r. Further,
to handle the weight clipping and gradient explosion or vanish
issue in training GAN, we add an extra gradient penalty loss
that limits the gradient to a specific range. After aggregat-
ing all the aforementioned structures together, the total con-
ditional cycle emotion GAN loss is listed below:

LCCEmoGAN (GS→T , GT→S , DS , DT , S, T ) =

LGAN + λ1Lidentity + λ2Lcycle + λ3(LCE + LRCE) (7)

where λ1, λ2, λ3 are the weights of different losses. We set
λ1 as 5, λ2 as 10, and λ3 as 10. All the generators and dis-
criminators are optimized during training process as:
G∗S→T , G

∗
T→S = arg min

GS→T ,GT→S

max
DS ,DT

{LCCEmoGAN (GS→T , GT→S , DS , DT , S, T )} (8)

2.2.3. Cross Corpus Emotion Recognition with Data Aug-
mentation:

After training CCEmoGANs, we use the generator of CCE-
moGAN to generate synthetic source domain samples to con-
duct data augmentation. Note that we first balance the source
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Table 2: Activation and valence result of baseline models and proposed model of data augmentation. All the results are
presented in UAR metric. The abbreviation TC A stands for the model training with only type A synthetic instances generated
from traditional cycle GAN, and TC OA means training by original source corpus with type A synthetic instances generated
from traditional cycle GAN.

Baseline Model CCEmo-GAN Augmentation
Corp. DANN* CyCADA CyEmoGAN TC A TC OA TC B TC OB A B C OA OB OC

Act. I2C 44.1 42.17 40.63 41.4 39.45 45.78 43.72 46.55 51.4 40.25 40.95 51.13 40.46
I2M 60.9 61.46 60.74 62.92 62.87 65.46 65.11 63.38 62.73 64.74 62.2 65.7 62.89

Val. I2C 42.71 31.67 40.97 36.2 36.35 43.52 44.51 44.24 47.75 45.5 43.38 47.56 43.32
I2M 47.17 41.75 43.36 42.49 48.46 43.45 48.54 44.51 39.43 37.03 48.59 50.11 49.4

domain emotion class distribution by random up-sampling the
minority class to have the same number of samples as the ma-
jority class before training CCEmoGANs. There are a total
of three types of samples that could be generated from the
learned CCEmoGAN:

• Type A : Variational Source Instance
In this manner, samples of source corpus belong to each
emotion label are fed to GS→T and then to GT→S .
With this procedure, we augment the source samples
by including synthetic data that has been transformed to
the target domain and back to the source domain. This
increases the variability of source data and include in-
formation about the target distribution at the same time.

• Type B : Transform Source to Target
We directly map the source corpus sample to the target
domain distribution using GS→T and assign the cor-
responding categorical emotion label from the source
sample for the transformed instance to augment the
source training data.

• Type C : Transform Target to Source
Final augmentation method is directly mapping all the
target corpus samples to source domain using GT→S

and annotating these synthetic data with a hidden vector
Z. In this strategy, we map each of the target samples
with three different categorical one-hot encode vectors
Z through GT→S to generate the same amount of data
for each of the three emotion categories.

After applying CCEmoGAN data augmentation, we train an
network of three dense layers as our recognition network, and
then directly evaluate the network on the target corpus.

3. EXPERIMENTAL SETUP AND RESULTS

Detailed settings of our model are listed below: in order to
achieve emotion consistency in our CCEmoGAN, we pre-
train an emotion classifier using 3 dense layers of size 500,
100, 3 neurons on the source corpus (the IEMOCAP) using
a leave one person out (LOPO) scheme to decide the opti-
mum epoch. Here, the number of epoch for activation and va-
lence is 15 and 20 respectively. All the label distributions are

balanced using random up-sampling before training the clas-
sifier. GS→T generator consists of three dense layers with
1000, 500, 1000 neurons, and GT→S contains three dense
layers with 1000, 500, 1000 neurons due to the one-hot en-
coded conditional emotion hidden vector Z, the input dimen-
sion of GT→S is 1585 (1582+3). We pretrain the generator
for 50 epochs with identity loss on our dataset as initializa-
tion. The learning rate of generator, discriminator are 2e-5
and emotion classifier is 2e-4 without decaying, and activa-
tion functions are LeakyReLU for generators and ReLU for
emotion classifier, batch normalization and early stopping are
also utilized. Note that we take extra caution to ensure no
information about speaker and emotion in the testing fold is
included in the training of CCEmoGAN.

3.1. Baseline Models

We compare with the following baseline models. Due to the
imbalance of the original emotion classes in the three datasets,
we also present results after balancing the label (indicated
with a star sign in the Table).

• Domain Adaptation Neural Network (DANN)

This architecture is first proposed in [12] to overcome
the issue of domain discrepancy when training on
cross corpus emotion datasets. DANN aims to find a
common space that could perform well on different
datasets. It has become the state-of-the-art model in
performing transfer learning for SER. In this work, the
encoder is built using two dense layers with 512, 128
neurons and emotion, and classifier portion includes
two dense layers each with 128, 32 neurons.

• Traditional Cycle GAN (TC)

Cycle consistent GAN is proposed in [14], which has
the advantage of using unpaired samples in training
GAN for two datasets. Traditional cycle GAN aims
at learning both the distribution of two datasets with a
bidirectional mapping through generative model. We
take this as a comparable baseline model, i.e., essen-
tially it is a cycle GAN without any emotion constraint.
All the parameters associated with generators, discrim-
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Table 3: Data augmentation result of activation and valence
implemented by different variants of cycle GAN models. All
the results are presented in UAR metric. The abbreviation
meaning is the same as above tables.

Data Augmentation
CyCADA CyEmoGAN

Emo Corp. A B OA OB A B OA OB

Act. I2C 47.42 45.79 41.04 44.54 42.37 41.02 38.85 42.52
I2M 59.63 60.02 64.05 63.01 61.35 61.83 58.24 57.91

Val. I2C 31.77 32.54 37.71 35.83 40.38 43.15 36.73 40.01
I2M 45.64 48.08 50.17 48.19 33.39 32.7 35.23 33.57

inators of source and target are set the same as our
proposed model.

• Cycle-Consistent Adversarial Domain Adaptation
Cycle-Consistent Adversarial Domain Adaptation (Cy-
CADA) proposed in [20] aims to mitigate the issue
of domain shift between training and testing corpus
through generative model as well. Different from
DANN, CyCADA jointly considers the label consis-
tency loss in their structure. In order to compare fairly
with our proposed model, the setting of cycle GAN
generators and discriminators are the same as ours, and
the pre-trained source emotion classifier is also applied
in this architecture.

• Cycle Emotion GAN (CyEmoGAN)
CycleEmotionGAN [21] is the latest generative model
used in image-based emotion recognition that is also
based on cycle GAN. Similar to the setting of Cy-
CADA, this architecture consists of a cycle GAN which
jointly considers the consistency loss between source
and target. The major difference is that the classifier
of main task is jointly updated when learning the cycle
GAN. All the settings of cycle GAN and classifier are
the same as ours for fair comparison.

3.2. Results and Analysis

3.2.1. Baseline Model Comparison:

We first run a within corpus experiment (LOPO) for each of
the three datasets to assess performance of the recognition
network in a non-transfer setting (results are in Table 1).
This also indicates the upper bound of the within-dataset per-
formance. The performance of baseline models and our pro-
posed methods are listed in Table 2, and all of them are mea-
sured in the percentage of unweighted average recall (UAR).
Different types of combination for data augmentations are
also presented.

By examining the baseline models, we observe that the
discrepancy between the IEMOCAP and the MSP-IMPROV
is less severe compared to the IEMOCAP and the CIT, es-
pecially evident from the activation dimension. This phe-

nomenon may potentially due to the similarity in the collec-
tion environment and interaction settings of both the IEMO-
CAP and the MSP-IMPROV. Recognition performance of ac-
tivation is generally better than valence, which is inituitive as
activation is known to be an easier construct to recognize us-
ing speech directly. Valence is known to be challenging to
compute from speech, and the discrepancy between corpora
creates a much larger degradation of performance on this di-
mension, i.e, we observe methods of baseline domain adap-
tion is also generally more useful for valence.

The results of using our method are listed in Table 2. Our
method consistently outperforms all of the current state-of-
the-art especially in the scenario of tremendous discrepancy
such as the setting in using model trained in the IEMOCAP
and test in the CIT for both dimensions (Table 2). Specif-
ically, when transferring from the IEMOCAP and the CIT,
the UAR of our proposed methods are 51.13% and 47.75%
in activation and valence respectively, which are 5.35% and
3.24% better than state-of-the-art traditional cycle GAN (TC)
model. Similar results are obtained when transferring from
the IEMOCAP to the MSP-IMPROV, where the improvement
are 0.24% and 1.57% respectively in activation and valence
as compared to TC model. Due to much lesser discrepancy
in the activation dimension, the improvement is limited when
transferring from the IEMOCAP to the MSP-IMPROV. How-
ever, we observe a consistent improvement in the more chal-
lenging task such as valence recognition in the cross corpus
experiments.

3.2.2. Comparison of Data Augmentation using Different
Generative Models:

Comparing to the baseline models, our proposed use of data
augmentation method achieves a better performance in gen-
eral by increasing the quantities and variability of training
data. Instead of directly using a pre-trained or a jointly-
trained classifier to predict emotion, we first generate an
augmented dataset and re-train the source classifier jointly
with synthetic and original data, which is then evaluated
directly on the target test samples.

For different types of generated samples, only type A and
type B synthetic samples can be generated by Cycle GAN
based generative model such as CyCADA and CyEmoGAN.
For type A, the variational source instance’s label is anno-
tated as the original source label, and for type B, the fake
target sample from generator GS→T is assigned to its cor-
responding (paired) source sample’s class label. However,
when taking target samples to be transformed using GT→S ,
no label information could be provided. However, in contrast
to these previous cycle GAN models, our CCEmoGAN model
employs the use of condition hidden vector Z, which is capa-
ble of assigning labels to type C synthetic samples. All of the
cross corpus recognition results are presented in Table 2, 3.

From Table 3, we observe the accuracy obtained using
our proposed model clearly outperforms all the others, es-
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Fig. 2: Visualization of three different types of synthetic data in the setting from the IEMOCAP to the CIT. The top figure
shows a visualization of activation class low, mid and high respectively, and below is for valence dimension. Blue, red, green,
yellow, purple stand for samples of original source corpus, type A, type B, type C and target corpus respectively.

pecially in setting where the mismatch is more severe, i.e.,
from the IEMOCAP to the CIT. Specifically, in the setting of
IEM2CIT, we obtain a 6.59% and 4.6% improvement in UAR
for activation and valence respectively. For IEM2MSP, the
improvement is limited to 2.69% in the activation dimension
due to less mismatch (further activation tends to be an easier
task), but the UAR improves 1.92% in the more challenging
task of valence recognition.

We also observe that the best case usually comes from us-
ing type B synthetic samples, and the result is quite intuitive.
The type B synthetic sample aims at recreating the target do-
main distribution, hence, by augmenting source corpus with
type B samples when training the emotion recognition net-
work naturally helps in improving the recognition accuracy
in the target domain for both activation or valence dimen-
sions. We further visualize the distribution of samples in each
emotion class (high, mid, low) for the source, synthesized,
and target domain samples to investigate the effect of our use
of CCEmoGAN as the sample generator. All the figures are
shown in Figure 2. We observe that almost all of the intended
characteristics for each type of synthetic instances are well
captured and generated, e.g., type B samples for each emo-
tion class should be well aligned with the target domain sam-
ples, and type A samples should be well aligned with source
domain samples for each emotion class, and so on. Except
for some mid class synthetic samples, the well-aligned data
distributions that are also emotionally consistent are key in
utilizing our proposed CCEmoGAN to achieve the improved
accuracy, and we observe this phenomenon even in severely
mismatched scenario, i.e., from the IEMOCAP to the CIT.
The bidirectional mapping between source and target corpus
with consistent emotion constraint to control synthetic sam-
ples using an additional condition vector Z provides a sig-

nificant boost in accuracy through generating target-domain
aware synthetic samples to be used in source corpus emotion
recognition network training.

4. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose a novel transfer learning strategy for
SER by using conditional cycle emotion GAN (CCEmoGAN)
data augmentation. Instead of learning a common invariant
feature space, our idea is to increase the variability of the
source data that is guided toward unlabeled target domain
with an additional emotion consistency constraint in order to
handle the issue of highly contextualized and limited in-scale
emotion spoken corpora. The model could generate specific
emotion from target to source corpus just by adapting the
emotion conditional vector Z during training. By generat-
ing different variants of emotion-aware synthetic samples to
derive an augmented source corpus that can be used to train
a robust emotion recognizer, our experiments demonstrate a
state-of-art speech emotion transfer recognition accuracy in
both activation and valence when using the IEMOCAP as the
source data on two different target data, the MSP-IMPROV
and the CIT.

The current conditional cycle emotion GAN is learned on
balanced emotion distribution through random upsampling of
source dataset. We would like to further investigate the im-
provement in SER transfer as a function on the amount of
synthetic samples, and examine whether the types of the orig-
inal source data when learning the conditional cycle emotion
GAN augmentation network would have an effect. Also, we
would continue to explore the idea of guided data augmen-
tation as an emotion transfer approach, e.g., training the aug-
mentation network from a much larger but not necessary emo-
tion corpora (ASR databases).
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