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ABSTRACT
Modeling cross-lingual speech emotion recognition (SER)

has become more prevalent because of its diverse applica-
tions. Existing studies have mostly focused on technical
approaches that adapt the feature, domain, or label across
languages, without considering in detail the similarities be-
tween the languages. This study focuses on domain adap-
tation in cross-lingual scenarios using phonetic constraints.
This work is framed in a twofold manner. First, we analyze
emotion-specific phonetic commonality across languages by
identifying common vowels that are useful for SER mod-
eling. Second, we leverage these common vowels as an
anchoring mechanism to facilitate cross-lingual SER. We
consider American English and Taiwanese Mandarin as a
case study to demonstrate the potential of our approach. This
work uses two in-the-wild natural emotional speech corpora:
MSP-Podcast (American English), and BIIC-Podcast (Tai-
wanese Mandarin). The proposed unsupervised cross-lingual
SER model using these phonetical anchors outperforms the
baselines with a 58.64% of unweighted average recall (UAR).

Index Terms— speech emotion recognition, domain
adaptation, cross-lingual, transfer learning.

1. INTRODUCTION

Building Speech Emotion Recognition (SER) strategies to
improve its generalization across different domains is a cru-
cial step to enable diverse applications across fields, includ-
ing healthcare, security, education, and entertainment [1]. A
common formulation for cross-corpus SER models aims to
mitigate mismatches between the source and target domains.
These approaches include strategies to compensate for fea-
tures, domains, or label mismatches using techniques such
as transfer learning, semi-supervised learning, and few-shot
learning [2, 3]. Other approaches include explicitly optimiz-
ing to decrease a distance metric between source and target
features (e.g., Wasserstein [4]), utilizing adversarial training
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to prevent domain memorization [5], or introducing addi-
tional synthetic domain-specific data that is produced by a
Generative Adversarial Network (GAN)-based model [6].
Although these models are useful, they tend to come purely
from a computational angle. When dealing with SER tasks
that require cross-lingual domain adaptation, it is expected
that knowledge about the languages can offer new modeling
opportunities.

One of the most important unsupervised cross-corpus
settings is cross-lingual applications, where SER models are
trained on one language and tested on another. Having a
strong cross-lingual SER strategy can facilitate the develop-
ment of SER for languages with less resources. Previous
studies have predominantly treated cross-lingual scenarios as
a language-agnostic problem [3,7–11], which limits language
domain adaptation. Emotion perception and the acoustic
feature space depend on the language [12]. Understanding
the similarities between languages can lead to better cross-
lingual SER domain adaptation strategies. Previous studies
have shown that discriminative emotional information can be
observed even at the phonetic-level [13]. Interestingly, some
of these emotional patterns at phone-level generalize to other
languages [14]. Simple phoneme-class dependent emotion
classifiers [13] and fine-tuned deep models (e.g., Wav2Vec2)
with emotion-dependent phoneme transcriptions [15] can
effectively improve emotion recognition rates. The similari-
ties across languages at the phone-level may not necessarily
be preserved at higher syntactic units (e.g., word, phrase
or sentence-level). Therefore, we explore anchoring our
unsupervised cross-lingual SER model to specific phonetic
commonalities across the target languages. As a case study,
we focus on transferring from American English (intonation
language) to Taiwanese Mandarin (tonal language).

This study proposes a cross-lingual approach that lever-
ages phonetic similarities across languages to anchor our
transfer learning strategy. We rely on two large-scale in-
the-wild natural speech emotion corpora: the MSP-Podcast
(American English) and BIIC-Podcast (Taiwanese Mandarin)
corpora. Our study involves two parts: First, we analyze
the emotion-specific commonality at the phonetic-level be-



tween American English and Taiwanese Mandarin. We rely
on two perspectives: phonological references and by building
phoneme-level SER. We observe that some vowels present
emotion-specific commonality across these languages. Sec-
ond, we devise an anchoring mechanism that leverages the
phonetic commonalities across languages. Using a con-
trastive formulation, we demonstrate that the proposed an-
choring mechanism over these target vowels can facili-
tate cross-lingual SER. Our proposed anchor-based domain
adapted cross-lingual SER achieves 6.89% improvement in
unweighted average recall (UAR) over the model with no
domain adaptation.

2. CROSS-LINGUAL CORPUS

The MSP-Podcast (MSP-P) [16] corpus contains a total
of 166 hours of emotional speech in English (v1.10). The
speech samples are obtained from recordings available on
audio-sharing websites. We used the Montreal forced aligner
(MFA) [17] to extract the phones with their boundary align-
ment. The MFA outputs phones in ARPABET notation, so
we convert the phones to the International Phonetic Alphabet
(IPA) notation using the commonly used mapping found in
the study of Rice [18].

The BIIC-Podcast (BIIC-P) corpus is a new SER database
that we are currently collecting. The speech samples come
from Taiwanese Mandarin podcasts, collected with a similar
protocol as the one used for the MSP-P corpus. The number
of emotional annotations ranges from 3-6 per sample. The
samples are annotated using eight primary emotional cate-
gories (Neutral, Happiness, Anger, Sadness, Disgust, Con-
tempt, Fear, Surprise) and three emotional attributes (Arousal,
Valence, Dominance). The corpus also includes transcrip-
tions. In this work, we used around 20 hours of data. We
first train a Taiwanese Mandarin forced aligner [19] using the
Formosa database. Then, we convert the phones to IPA nota-
tion using the mapping in Liao et al. [19].

3. EMOTION-SPECIFIC COMMONALITY

We analyze the corpora from the perspectives of phonetic
analyses and emotion-specific SER results to find emotion-
specific commonalities in the set of “common ground” vow-
els. This work considers the following set of common vowels:
{i, E, @, A/a, O, u}. We use around 12 hours of data from each
corpora, matching the emotional distributions across them.
Our analysis considers the emotional classes of happiness,
anger, sadness, and neutrality.

3.1. Phonetic Analysis
The phonetic analysis aims to observe similarities across vow-
els obtained from the emotional recordings in American En-
glish and Taiwanese Mandarin. We analyze the vowel space
using the first two formants (F1 and F2) estimated from the
MSP-P and BIIC-P corpora using Praat [20].

(a) MSP-P (b) BIIC-P

Fig. 1: Vowel F1-F2 plots of common vowels for the MSP-
P and BIIC-P corpora; lower-left corner shows the canonical
placement of the vowels considered in the literature.

Figure 1 shows the vowel space (F1 vs. F2 plots) for the
samples across emotions. The superimposed graphs on the
lower left provide the location of the vowels known from pre-
vious literature for English and Mandarin [21–23]. Figure 1a
shows that the English’s vowel /u/ is high fronted (reported
in [24]), which could be due to different gender ratios or di-
alects of the speakers. The placement for this vowel is dif-
ferent in Chinese. Overall, Figure 1 shows similar results for
vowels in English and Chinese. In both languages, the plots
show that this set of common vowels span most of the F1-F2
space, and their positions are consistent with what it is ex-
pected from the literature. From Figure 1, we see some visible
vowel commonality over corpora, such as vowels /i/ and /@/,
which cover similarity regions in their respective languages.

Figure 2 shows a plot of the average F1 and F2 values
with respect to four emotional classes: Neutral, Happiness,
Anger, and Sadness. The data in Figure 2 are normalized
using the Nearey normalization [25] to remove speaker dif-
ferences due to individual vocal tract disparities and gender.
Figure 2a shows that for Neutral speech, the closest distances
across languages for corresponding vowels are /i/ and /@/. In
fact, the two vowels show this trend over all four emotions.
These vowels are potential candidates for serving as anchors
in our transfer learning strategy due to their similarity across
both languages. In Figure 2, we circle in green vowels that
are closer across languages for Happiness, Anger, and Sad-
ness than for Neutral (e.g., the distance between /E/ across
languages is smaller for Happiness than for Neutral). These
plots are useful to identify vowels that have similar responses
across languages in the presence of emotions.

Phonetic examinations using these figures provides ini-
tial insights into phonological similarities across languages.
These insights point toward the existence of some candidate
emotion-specific vowel commonality (as seen in the vowel
format plots) that can inspire cross-lingual SER strategies.

3.2. Emotion-Specific SER Analysis
We evaluate performance of vowel-based SER models. We
use the 768 dimension wav2vec 2.0 feature vector [26], ex-
tracted after the phone-level segmentation [27]. These acous-
tic features are the input of a transformer encoder that gen-
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Fig. 2: Emotion-specific average for common vowels in the F1-F2 space for sentences from the MSP-P and BIIC-P corpora.

erates a self-attention hidden embedding. These embeddings
are used as encoded features for modeling emotion-specific
SER. The model uses the Adam optimizer, with a stochas-
tic gradient decent algorithm. The learning rate and decay-
ing factor are set to 0.0001. The models are trained for a
maximum of 100 epochs, with a batch size of 128 with early
stopping. The cost function is the binary cross-entropy loss
and UAR is used as the evaluation metric. Table 1 shows
vowel-dependent SER models trained and tested with differ-
ent corpus combinations. For example, M→B indicates a
cross-lingual experiment training the model with the MSP-P
and testing it with the BIIC-P.

Within-Corpus Vowel Discriminability Analysis: By analyz-
ing Table 1, in matched conditions (M→M and B→B), we
can see that some vowels do carry similar discriminative ca-
pacity from a SER modeling perspective. The performances
highlighted in bold in matched cases show that some vowels
have similar UAR (within a 2-3% UAR range). In the case
of Neutral, the SER models for /i/ and /@/ lead to better UAR,
compared to the other vowels for both corpora. For Happi-
ness, the SER models for /i/, /@/, and /A,a/ have similar perfor-
mance for both corpora. For Anger, the SER models for /A,a/,
and /E/ achieve similar good performance for both corpora.
For Sadness, the SER models for /E/, /O/, and /u/ show similar
performances over corpora. Because our study aims to iden-
tify vowels that perform well in both corpora in vowel-based
SER, this selection of vowels are good candidates as anchors.

Cross-Lingual Vowel Discriminability Analysis: Table 1 also
shows the cross-lingual analysis (M→B) SER performances
for each emotion. Given the larger size of the MSP-P cor-
pus, we only formulate cross-lingual experiments by train-
ing with MSP-P and testing with BIIC-P. The bold values in
this section highlight the best vowel for that specific emo-
tion in this cross-lingual setting. The results indicate that
some vowel-specific SER models trained with the MSP-P cor-
pus do not work well in recognizing emotions for the BIIC-P
samples. For example, the SER model for /O/ for Sadness
shows low performance as compared to other emotions, even
in the matched condition SER models for /O/ have relatively
good performance for both languages. The table depicts that
even though some vowels have emotion-specific commonality
over corpora, these vowel-dependent models are not effective
without compensating for the corpus-wise variability.

Table 1: Emotion-specific SER performance over common
vowels in both corpora; the Exp column shows the vowels as
a phonetic constraint used in GA-CL as G⃝, BA-CL as B⃝, and
WA-CL as W⃝ . GA = group anchored, BA = best anchored,
and WA = worst anchored.

Neutral Happy Angry Sad
UAR Exp UAR Exp UAR Exp UAR Exp

/i/
M→M 75.78

G⃝ 76.47
G⃝B⃝ 73.36 65.30

B→B 77.62 75.04 72.53 67.87
M→B 60.8 60.28 60.19 59.96

/E/
M→M 69.45 73.90 75.78

G⃝ 67.34
G⃝B→B 75.66 68.24 75.22 70.19

M→B 58.34 60.10 55.53 51.76

/@/
M→M 76.34

G⃝, B⃝ 75.78
G⃝ 73.65 64.35

W⃝B→B 77.15 75.50 72.52 65.19
M→B 61.55 63.23 63.89 50.40

/A,a/
M→M 69.36

W⃝ 75.61
G⃝ 76.56

G⃝, B⃝ 67.45
B→B 75.31 74.31 75.14 68.34
M→B 61.93 61.41 61.45 53.02

/O/
M→M 74.38 72.53

W⃝ 70.89 68.76
G⃝, B⃝B→B 76.19 70.99 74.62 70.82

M→B 58.93 57.82 59.20 58.48

/u/
M→M 76.45 77.01 70.35

W⃝ 66.89
G⃝B→B 73.36 71.23 72.29 69.28

M→B 51.04 52.69 53.02 52.24

From both phonetic analysis and within- and cross- corpus
vowel-specific emotion recognition experiments, there seems
to be phonological similarity over some of these common
vowels, similar emotion discrimination ability, and difficulty
in directly transferring learned emotion discrimination for
certain vowels. With these insights and observations, we
select some commonly behaving vowels (marked with G⃝ in
Table 1) to facilitate the design of cross-lingual SER.

4. ANCHOR-BASED CROSS-LINGUAL SER

Our analyses in Section 3 provide initial evidences that cer-
tain vowels can be phonetically-similar after emotion modu-
lation across the two languages. Inspired by these findings,
we design an anchoring mechanism to integrate the phonetic
constraint in cross-lingual modeling (Fig. 3). Our proposed
unsupervised cross-lingual SER contains two branches: (1)
the conventional emotion classification branch for classifying
emotions, and (2) the vowel domain adaptation branch that
integrates the phonetic constraint. Equation 1, gives the clas-
sification loss,

Lec = EXS ,yS
[∥CE(T (XS), yS)∥] (1)



Fig. 3: Proposed contrastive learning approach using
emotion-specific commonality-based anchoring mechanism
for cross-lingual SER.

where CE is the cross-entropy function, T is the transformer
function, XS is the source features, and yS is the emotional
labels.

The vowel domain adaptation branch performs the an-
choring mechanism on the two corpora by imposing phonetic
knowledge as a constraint to leverage the similarity between
the two languages for certain phones, which leads to better
regularization. Our formulation rely on the triplet loss func-
tion. Specifically, the segments from emotion-specific vowels
in the target domain act as Anchors. The Positives samples
are the vowel segments from the source domain for the same
set of vowels to transfer specific-emotion knowledge. The
Negatives samples are the vowel segments from the source
domain for the same vowel set, but with different emotions.

Using these Anchors, Positives and Negatives sam-
ples, we calculate the triplet loss to match the source and tar-
get domain to integrate the vowel similarity as a constraint in
cross-lingual SER learning. This adaptation loss is calculated
using Equation 2,

Lad =
∑N

i [d(f(Xi
tph), f(Xi

spph))− d(f(Xi
tph), f(Xi

snph)) + α] (2)

where d represents the Euclidean distance function, f(Xi
tph) is

the feature representation for the target domain, and f(Xi
spph))

and f(Xi
snph) are the positive and negative feature represen-

tations of the source domain for the same vowel set, respec-
tively. α represents the margin. The complete loss is calcu-
lated using Equation 3,

Ltotal = Lec + Lad ∗ λ (3)

where Lec and Lad are the losses for the emotion classifi-
cation and domain adaptation tasks. λ is the regularization
parameter.

4.1. Experiment Results
All the feature extraction and experimental settings are the
same as the ones presented in Section 3. The systems are
trained and back-propagated with Equation 3. The SER for-
mulation is a binary emotion detection task, and a four-class
emotion classification task in an unsupervised cross-lingual

Table 2: Cross-lingual SER performance (in UAR) with
proposed group-vowel-anchored (GA-CL), feature-matching
(FM-CL), and some ablation results with best-vowel-
anchored (BA-CL) and worst-vowel-anchored (WA-CL).

Models 4-Category Neu Hap Ang Sad
CL 51.75 65.61 62.77 64.47 58.53

FM-CL 56.92 70.40 67.32 69.83 65.59
GA-CL 58.64 72.83 69.69 70.15 68.17
BA-CL 55.33 70.23 68.74 67.83 63.91
WA-CL 55.21 70.43 61.45 66.26 64.62

setting. The models are trained and evaluated on a fixed train,
validation, and test sets. The BIIC-P test data used in this
section is approximately 6 hours, which is not included in the
analysis presented in Section 3.

Table 2 shows the performances (in UAR) for the cross-
lingual SER models. In this initial work, we consider as
baselines for performance comparison models with no do-
main adaptation (CL), and with simple feature matching (FM-
CL), where Anchors segments in the target domain are ran-
domly selected. Our proposed model group-vowel-anchored
(GA-CL) for unsupervised cross-lingual SER outperforms the
CL and FM-CL models with absolute UAR gains of 6.89%
and 2.72%, respectively. We also experimented our phonetic
anchoring idea with the most and least commonly behaving
vowel over corpora i.e., best-vowel-anchored (BA-CL) and
worst-vowel-anchored (WA-CL). Table 1 indicate the single
vowel selected for these two models. Table 2 shows that the
BA-CL model has better performance than the WA-CL model
for Happiness and Anger. Using a single vowel (BA-CL) as
Anchor is not as good as selecting the set of vowels used
for our proposed model (GA-CL). These results confirm that
transfer learning based on the selected common phonetic an-
chors can integrate important information that facilitates lan-
guage adaptation in cross-lingual SER.

5. CONCLUSION

This paper proposed a phonetic anchoring mechanism for un-
supervised cross-lingual settings based on initial evidence of
emotion-specific commonality of vowels from two different
languages. An emotion-specific commonality analysis indi-
cated that some vowels are more similar between corpora af-
ter emotion modulations. Our contrastive learning approach
used these vowels as phonetic constraints to control the vari-
ability between two languages, enhancing the learning for un-
supervised cross-lingual SER. The proposed model GA-CL
based on phonetic anchor-based transfer learning (58.64%)
outperforms the FM-CL (56.92%) and CL (51.75%) baselines
models. In future work, we plan to merge this novel phonetic
knowledge-driven anchoring mechanism with recent SOTA
approaches on domain adaptation for better generalization. In
addition, we plan to include common ground consonants (par-
ticularly fricatives, affricates, and approximants) to improve
cross-lingual SER performance.
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