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ABSTRACT

Detecting and modeling the engagement of a child during an inter-
action offers meaningful insights into socio-emotional and cogni-
tive state assessment. Previous work has shown that the engage-
ment level of a child during an interaction with a psychologist can
be captured from their vocal behavior. In particular global statisti-
cal measures on vocal features computed over an entire interaction
were associated with the perceived level of engagement. We extend
this framework by introducing a new scheme to capture the temporal
patterning of vocal features using sequence models of the interacting
child-psychologist dyad. We achieve enhanced unweighted accura-
cies of 73.23% (chance 50.00%) in a classification experiment of
distinguishing the most engaged state against others and a three way
accuracy of 51.42% (chance 33.33%) in discriminating three levels
of perceived engagement using the new set of features.

Index Terms— Behavior signal processing, child engagement,
sequence model

1. INTRODUCTION

Several research studies interlink childhood development, speech ac-
quisition, joint attention and engagement [1, 2, 3]. In our previ-
ous investigations on child-psychologist interactions (captured in the
Rapid-ABC database [4]), we observed that the vocal cues from the
child and the psychologist carry useful information in discriminating
various levels of perceived child engagement. This was solely based
on the global statistics of prosodic, spectral and speech timing fea-
tures calculated over the entire duration of an interaction. While the
prosodic and spectral features carried useful discriminative informa-
tion, it was found that the speech timing features were the strongest
in terms of contributing to the classification accuracy. However since
these global measures were calculated at the whole session level,
local patterns of vocal behavior during interactions were not com-
pletely captured. In the present work, we examine a novel classifica-
tion scheme that captures and utilizes local variation and patterning
of such behavior interaction behavior.

In the proposed model, we use a sequence model of “word units”
that are defined on quantized vocal features. Such quantized repre-
sentation of feature trajectories have been found to be effective in
capturing temporal dynamics such as of vocal prosody [5]. The pro-
posed “word units” are used to provide a joint measure on the vocal
streams of the child and the psychologist and thus captures the in-
teraction dynamics between the dyad during a session. The model
is motivated by the premise that the local patterning of vocal events
(e.g., pausing behavior) is informative in assessing the pertinent en-
gagement level beyond behavioral measures of task performance.
We combine this model with models based on global statistics of
prosodic and spectral features as well as high level features such as
total speech length and number of overlaps. The global statistics are
calculated on the entire sub-session over which the child’s engage-

ment level was assessed by the interacting psychologist. The metrics
used to evaluate the performance of such models is unweighted bi-
nary accuracy (chance 50%) in a classification task of most engaged
state versus others; a finer three way classification task involving
three different engagement levels (chance 33.33%) as perceived by
the psychologist is also evaluated. We achieve accuracies of 73.23%
(relative improvement 2.92%) for the binary case and 51.42% (rel-
ative improvement 4.74%) for the three way classification using the
new measures. The relative improvements are reported over a model
trained only on global statistical measures.

We discuss the database in section 2, and the experimental setup
in section 3. Discussion of results and conclusions are presented in
section 4 and 5, respectively.

2. DATABASE

2.1. Database description

We use the Rapid-ABC database collected as a part of larger NSF
funded study' that aims to develop novel computational methods for
measuring and analyzing the behavior of children and psychologists
during face-to-face social interactions. This database includes a 3-
5 minute interaction between a child and a psychologist where the
psychologist interacts as well as evaluates the child on five differ-
ent tasks. These tasks consist of smiling and saying hello, ball play,
jointly looking at a book, putting a book on your head as if it is a
hat, and smiling and tickling. During these activities the psycholo-
gist marks the engagement level of the child by a score of ‘0’, ‘1’ or
2°, with ‘0’ indicating the highest engagement level. We use these
scores as the outcome variable to be predicted. A recent publication
[6] on the same database, gives a more detailed description of the
database. [6] uses both the modalities of vision and speech for activ-
ity detection and lays the groundwork for linking them to diagnosis
and treatment of developmental disorders such as autism.

We use 63 sessions of data from children 9-30 months old for our
current study. Our vocal analysis is performed on the audio from a
central farfield microphone used in data collection. Since we have 5
tasks per subject, there are 63 x 5 =315 sub-sessions over which we
have the engagement scores. 224 of these sub-sessions have a score
of ‘0’, 60 a score of ‘1’ and 31 are assigned a score of ‘2’. Since
the child did not need to speak during the interaction, 255 out of the
315 sub-sessions contain child vocal activity. All of these sessions
necessarily have psychologist speech.

2.2. Database processing

We first segment the database into speech and non-speech segments
using a voice activity detection (VAD) system based on long term

Thttp://www.cbs.gatech.edu/



*—‘—?
)

Fig. 1. Classification tree

Child Psychologist

Global statistics on Global statistics on

1. Prosodic
Features

1. Prosodic
Features

2

2. Spectral 2. Spectral
features features
1 2 -
255 instances 315 instances
Sequence High level "
m Model based features ‘f”
- measures [~ 3 —
315 instances 315 instances
> SVM n

Fig. 2. Classification setup

Table 1. List of features

Feature Source | Features Functionals
Category (as applicable)
Prosodic Child Pitch, Mean, Variance,
Features Psyc. | Intensity, Range, Kurtosis,

Jitter, Quantiles(10%, 25%,
Shimmer 50%, 75%, 90%)
Spectral Child MFCC Mean
Features Psyc. (13 Bins) Variance
High level | Sub-session length (normalized task-wise)
Features Child speech length, Number of (#) over-
laps, Total Speech activity, #Psychologist
utterances, #Child utterances

spectral variability features [7] in every 10 ms window. After ob-
taining the voiced segments in the database, we perform a semi-
supervised speaker segmentation on the dataset. The speech seg-
ments for the child are annotated manually using Audacity software
[8]. This is followed by the other voiced segments directly attributed
to the psychologist, as this database essentially involves interaction
between two people.

3. EXPERIMENTS

We train several discriminative models based on the extracted fea-
tures as discussed below. We use Gaussian mixture models (GMM)
as our base classifiers and evaluate the performance using leave-one-
session-out (= 5 sub-sessions) cross-validation. In order to determine
the parameters on the train set, we perform an inner cross-validation
on the train set again by leaving one session out at a time. The clas-
sification is performed using a tree structure as shown in figure 1.
We first carry out binary classification between states ‘0" vs ‘1’ or
‘2’ and then between‘l’ and ‘2’ at node 2 . The entire classification
setup is summarized in figure 2. The blocks 1, 2 and 3 use GMM
trained on global statistics on various features. We capture the lo-
cal patterns in the features in block 4. Finally we perform a fusion

Table 2. Accuracies on global statistics of features

Feature Unweighted Accuracy
Category Binary 3-class
(Tree Node 1) | (Tree Node 1+2)
Prosodic | Child 59.01 42.74
Features | Psyc. 54.30 36.58
Spectral Child 67.15 38.55
Features | Psyc. 65.17 43.53
High level 65.36 45.35

Features

based on stacked generalization [9] using a support vector machine
classifier on probability outputs from the individual GMMs.

3.1. Classifiers based on global statistics on features

In the previously proposed classifier scheme [4], we used prosodic,
spectral and other high level features from the child and the psy-
chologist and trained a multiple logistic regression model on their
statistics over the entire sub-session. In this paper, we change the
base classifier to Gaussian mixture models and expand the feature
set and perform forward feature selection on the train set to max-
imize the unweighted accuracy. The features and their functionals
are listed in Table 1. The features were extracted using Praat [10]
and mean normalized per speaker. The results are presented in Table
2 and they follow a similar trend as observed in [4]. We see that
the prosodic features from the child speech are better indicator of
engagement as compared to psychologist speech. It is also observed
that a few high level features give the best classification accuracy in
3-way classification. This indicates that features of speech duration
and the timing patterns of speech from both the speakers also contain
useful information with regards to engagement assessment.

We plot the two most informative features for the prosodic and
high level feature categories at each of the two nodes in the binary
classification tree in figure 3. As is also reflected in the results, most
of the prosodic features do not occupy very distinct regions, leading
to inter-class confusion. However, the pitch and intensity range for
the child and intensity range for the psychologist tend to go higher
with increased disengagement as seen in the distribution of node 1
datapoints. A more discriminating pattern is observed in the data
point distribution for the high level features, where we see that an
increase in the total session length (duration) implies more disen-
gagement for Node 1. Similarly a higher number of child utterances
are observed for class ‘2’ as compared to class ‘1’ in the node 2 plot.
This suggests that greater amount of speech activity leads to higher
disengagement as the tasks require visual joint attention instead of
vocal interaction.

3.2. Classifiers based on sequence model (SM) probabilities

As also pointed out in [6], the psychologist structures his behavior as
per the child and thus an important part of the engagement process.
In this model we intend to capture the patterns in features during
dyadic interactions by calculating a measure on each feature stream.
We implement a Markov structure on quantized feature levels in this
scheme. Thereafter we calculate a metric on feature values based
on this Markov structure to capture the local patterns. We define a
sequence dictionary on the entire dataset and then classify based on
an output probability measure obtained from this model. We explain
the sequence dictionary formation and measure calculation based on
this dictionary below.
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Fig. 3. Classwise plots depicting patterns in features with respect to
engagement levels

3.2.1. Sequence dictionary creation

Initially, we segment the session into small non-overlapping seg-
ments on the VAD output of window length W. Each of these
segments is assigned a “word” based on the outputs from the VAD,
speaker segmentation and a pre-selected feature on one of the speak-
ers. VAD¢ and VAD p indicate the presence or absence of child and
psychologist vocal activity, respectively. The word assignment strat-
egy for a feature defined on child speech is listed in Table 3. An
example of a sample session with W = 4 and a feature chosen on
child voice is shown in figure 4. The threshold in the figure is used to
quantize the window-wise mean of the features into two levels and
is chosen as mean of the feature over the entire sub-session. Using
this thresholding scheme, we aim to capture the inherent distribution
of these features during the interaction. Quantizing the features into
two bins can be viewed as approximating them by a Bernoulli dis-
tribution with one outcome representing the window-wise mean to
lie above a threshold and the other below. E is the sample expecta-
tion operator over the pertinent window and NV is the total number of
windows in the session. After obtaining such a sequence of “words”
on the training data, we develop an n-gram sequence model (SM).
An n-gram models the probability of sequence of words, similar to
language modeling. The SM is trained based on the frequency count
for each of the n-gram sequences (#(wy! /wy' , .., w,‘j’f_nH)) for all
windows S; € Training set (equation 1). These word counts are nor-
malized by the total number of words from all the training sessions.

Child Stream
gbhbLbooOoooooooooopoooooooooooaa
OoOoOoopoboooOoooooooooOoooooBsooa
Psyc. Stream|
Window 1 | Window 2 Window 3 Window 4 T Window N
E(VAD)= | E(VAD)> | E(VAD)> | E(VAD)> | E(VAD)= | E(VAD)> | E(VAD)>
0 0 0 0 0 0 0
E(VAD)= | E(VAD)= | E(VAD)> | E(VAD))> | E(VAD)> | E(VAD)= | E(VAD)>
0 0 0 0 0 0 0
E(feature) > | E(feature) > | E(feature) > E(feature) < |E(feature) <
Threshold Threshold Threshold Threshold | Threshold
Word Word Word Word Word Word Word
" D 6 P o 3 5

[ Vocal activity present  [] Vocal activity absent

Fig. 4. Dictionary learning to capture local feature patterns

Table 3. Word assignment

Window contains Assigned word
No vocal activity 1
E(VADc) =0 & E(VADp) > 0 2
E(VAD¢) > 0 & E(VADp) = 0) 3
& E(feature) < threshold
E(VAD¢) > 0 & E(VADp) =0) 4
& E(feature) > threshold
E(VAD¢) > 0 & E(VADp) > 0) 5
& E(feature) < threshold
E(VAD¢) > 0 & E(VADp) > 0) 6
& E(feature) > threshold

Table 4. SM Features and their accuracies

Feautre used Unweighted Accuracy (%)

in LM Binary 3-class
(Tree Node 1) | (Tree Node 1+2)

Constant 71.51 47.76
Child Pitch 68.25 40.74
Psyc. Pitch 70.38 47.94
Child Intensity 66.60 41.29
Psyc. Intensity 66.60 38.67

N is the number of windows in the #** session.

SM(wk/wk—h ) wk—n+1) =

St/ S s
ZteTrainSct#(wkt/wkih "’wkinJrl) M
ZteTrain Set Nt

3.2.2. Measure generation from the sequence dictionary

We generate a set of measures from the above SM trained on the
entire train set. The measure for a sample session S is defined as
the n-gram count in that session multiplied by the SM probabili-
ties (equation 2). This gives the relative occurrence of each n-gram
pattern in a session. These measures represent the likelihood of an
n-gram sequence as is generated from a particular session. We hy-
pothesize that the distribution of chosen features and the interaction
pattern would be different for different levels of engagement. In such
a case, these differences will be reflected in the likelihoods for the
n-gram sequences.

M(wf/wf_hu,wf_nﬂ) = )

SM(’U)k/wk717 i3 wk7n+l) X #(wlf/wlf—h 3 wlf—n+1)

For example, an n-gram trained on 6 such words leads to 6"
such measures. We train a discriminative Gaussian mixture model
on them. We use a bi-gram model for the feature generation and
did not define dictionaries with multiple features as more complex
n-gram models led to sparse SM, which decreased the accuracies
in our experiments. The features and the corresponding results are



Table 5. Classification accuracies after fusion

Feature Source Selected Model Class-wise Accuracy Unweighted | Unweighted
Class ‘0’ | Class ~‘0’ | Class ‘1’ | Class 2’ Accuracy Accuracy
(Node 1) (2 class) (3 class)
Global statistics High Level 78.57% 63.73% 71.15%
on features features'? 78.57% 30.00% | 38.70% 49.09%
Feature based Constant'*? Child Pitch!»? 77.23% 69.23% 73.23%
on SM Psyc. Pitch!:?, Child Intensity?> | 77.23% 33.33% | 32.25% 47.60%
Fused Constant"?, Child Pitch'» 77.23% | 69.23% 73.23%
Model Psyc. Pitch"?,Child Intensity"?, | 79.01% 3333% | 41.93% 51.42%
High level features®
Psychologist pitch 12 Psychologist intensity
listed in Table 4. We also train a model without using any feature to 8 10 "
include the pure vocal interaction pattern between the two speakers. 6 N s
This reduces the number of words to assignments to 4 from 6 as in 5 =
Table 3. This is same as setting the feature to be a constant and thus £ 4 El ot
is referred to as “constant” feature in Table 4. We set W = 10 in the § o ; 4
experiments. ERC K S E g
From the results in Table 4, we observe that we can obtain a good g0 ° %08
classification accuracy by incorporating feature dynamics along with 0 ok + of Il ."
the interaction pattern between the speakers. A plot of occurrence - o class0
count of “word 4” given “word 4” and “word 4” given “word 5” 2 0 #W20rd alord S8 dassal ° #aord 2/word64 8 10
is shown in figure 5. It can be seen that pitch and intensity tend . class 2
to have higher values for both psychologist and child for the more o N
. Child pitch Child intensity
disengaged classes. 6
10
5
3.3. Feature fusion 8 . .
We obtain our final label based on a support vector machine (SVM) § 6 E 3 °
classifier trained on the posterior probabilities obtained from the = 4 e ° 3
Gaussian mixture models trained at node 1 and 2. During the training ~ § § 2
of such a SVM, we set the cost of misclassification for each of the =+« 2 " #® 1] oor
classes inversely proportional to the number of class instances due to o
m—e 000 + ¥ x x 4 0  emmmmcmo . «
their uneven distribution. We initially observe the fusion results on
the global and SM models individually and then fuse all the models. 2 2 4 & & 10 o 2 4 6 & 10

We perform a brute-force search as to what discriminative models
should be finally used to train the SVM model for optimal binary
and 3-class accuracies. The selected models and the corresponding
accuracies are listed in Table 5.

4. DISCUSSION

We observe that for the global model, the high level features by
themselves are the most informative. The features based on the SM
probabilities are stronger for binary classification with a higher ac-
curacy for ‘~0’ class, but worse in the 3-way classification. The
best binary classification uses the SM features only. This shows that
the use of SM measures is better able to make the broad distinction
of being engaged or not, which is otherwise diluted in the calcula-
tion of the global features. Note that in the 3-way classification the
class ‘0’ accuracy is higher as compared to other classes due to the
nature of the classification. The SVM classifier first balances accu-
racies between class ‘0’ and ‘~ 0’. Then it classifies class ‘1’ from
‘2’. During the final fusion from all the features, all the features se-
lected in individual models help and we observe the best accuracy
for all the classes. This suggests that even though the SM measures
have less discriminative power in classifying between the two higher
disengagement states, they carry complementary information to the
global features in capturing the characteristics depicted in class ‘0’
and class ‘2’ sub-sessions particularly. This indicates that the en-
gagement level perceived by the psychologist depends on not only
the outcome of the overall perception of the psychologist, but also
how local events unfold during the interaction.

# word 4/word 4 # word 4/word 4

Fig. 5. Bigram counts of word occurrence for the three levels of
perceived engagement

5. CONCLUSION

In this work, we examined a novel sequence modeling scheme to as-
sess the engagement level of children during dynamic interactions.
We observe that not only do global measures calculated over the en-
tire session carry discriminative information about the engagement
level as perceived by the psychologist, the local dynamics of feature
patterns is also informative. We further show that we can fuse the
two feature sources to achieve our best model.

As future work, one can look into better quantization scheme for
such sequence dictionary formation. As of now, we chose the mean
of global features as the threshold. However this is not necessarily
optimal for classification. Apart from this, more complex sequence
models with higher order n-grams and multiple features can be tested
with larger databases that are not limited by data sparsity. Finally,
one can also apply better smoothing techniques that are prevalent in
language modeling before feature extraction to further smooth the
sequence model.

!optimal for node 1 2 optimal for node 2
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