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Abstract— Parkinson’s disease (PD) is one of the most se-
vere and common disease globally. PD induces motor system
impairment causing symptoms such as shaking, rigidity, slow-
ness of movement, body tremor and difficulty with walking.
Clinically, accurately and objectively assessing the severity of
PD symptoms is critical in controlling appropriate dosage of
Levodopa to prevent unwanted side effect of switching between
Dyskinesia and PD. The unified Parkinson’s disease rating scale
published by the Movement Disorder Society (MDS-UPDRS)
is an validated instrument regularly administrated by trained
physician to assess the severity of a PD patient’s motor disorder.
In this work, we aim at advancing vision-based automatic motor
disorder assessment, specifically hand tremor and movement,
for PD patients during UPDRS. Our proposed method leverages
information across the two behavior tasks simultaneously via
deep joint training to improve each single task’s, i.e., tremor
and movement, severity classification rate. We evaluate our
framework on a large cohort of 106 PD patients, and with our
proposed deep joint training framework, we achieve accuracy
of 78.01% and 80.60% in right and left hand movement binary
classification; in terms of tremor severity classification, our
approach obtains an enhanced recognition rates of 72.20% and
71.10% for right and left hand respectively.

I. INTRODUCTION

Parkinson’s disease (PD) is a severe long-term degenera-
tive nervous system disorder. In 2015, PD happened to 6.2
million people causing 117 thousand death. To date, there
remains no cure for Parkinson’s disease. Most PD patients
suffer from motor system disorder, e.g., shaking, rigidity,
slowness of movement, body tremor, and difficulty with
walking [1]. Levodopa is regularly prescribed to PD patients
in order to ease these symptoms [2]. However, the long-
term overdosing of Levodopa may cause a side effect called
Dyskinesia. Specifically, this side effect creates an “On-and-
Off” state. When too much Levodopa is taken, “On” state
would be activated, and Dyskinesia would show; too little
Levodopa would results in an “Off” state where Parkinson-
ism would show. In current clinical practices, identifying a
proper balance in the Levadopa dosage for each PD patient
is one of the most critical issue in the treatment course.

Clinically, physicians use the unified Parkinson’s disease
rating scale published by the Movement Disorder Society
(MDS-UPDRS) to evaluate the severity of the disordered
symptoms in order to assist in prescribing medications for PD
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patients [3]. UPDRS is usually performed in a clinical setting
relying on expert’s manual ratings. This restriction prevents
the UPDRS to be administrated for scalable applications,
e.g., in home and/or assessment on demand. This assessment
can also be susceptible to inter-physician variability. Devel-
oping objective methods in assessing the severity of impaired
motor symptoms is critical for PD patient’s healthcare.

Most of the previous automatic PD assessment research
has actively investigated the use of wearable sensors. For
example, Taewoong et al. performed automatic PD motor-
state recognition with a wrist-worn wearable sensor using
deep learning [4]; Lang et al. used multi-layer Gaussian
Process to estimate motor symptoms severity [5]. Giuberti
et al. instrumented patients with wireless body-worn inertial
nodes in order to estimate the relationship between UPDRS
score and leg agility task [6], and Hssayeni et al. developed
a mediation state detection for Parkinson’s disease also using
wearable sensors [7]. However, wearable solutions are gener-
ally expensive and require extensive effort in instrumenting
patients. Recently, researchers have moved toward vision-
based PD symptoms assessment. For example, Rao et al.
validated a new score for video-based Dyskinesia severity
[8]. Li et al. developed a vision-based method to detect
motor system disorder using pose estimation [9] and further
monitored patients after Levodopa infusions using video
camera for a 9 PD patient cohort [10]. Pintea estimated the
hand tremor of PD also from the videos [11].

While several works have started to investigate vision-
based approaches for automatic PD symptom assessment,
they only concentrate on a single task (e.g., hand tremor
only) and on a very limited number of patient samples. In this
work, we collect a database of 106 PD patients recordings
during UPDRS interviews. PD is a nervous system degen-
erative disorder affecting motor system with symptoms po-
tentially manifested simultaneously across different UPDRS
tasks. Hence, we propose to perform automatic hand tremor
and movement disorder severity assessment (the two major
contributing factors of UPDRS) through deep joint training
to improve the accuracy of each single task. Specifically, our
method obtains accuracy of 78.01% and 80.60% in right and
left hand movement’s binary classification task; in terms of
tremor severity classification, our proposed approach obtains
72.20% (right) and 71.10% (left) accuracy.

II. METHODOLOGY
A. Database

Our database is collected at the Department of Neurology,
China Medical University (CMUH), Taiwan.1It consists of

978-1-5386-1311-5/19/$31.00 ©2019 IEEE 3408



Fig. 1. Figure shows our proposed framework. OpenPose tool kit is used to to extract key points from hand, each hand is then encoded using task-level
encoding method. Task 2 and Task 7 labels are predicted from concatenating the two extracted hand features simultaneously via joint training

106 PD patients performing the 13 tasks derived from
instrumentation of UPDRS (approximately 12 minutes total).
Each task is marked on a scale between [0, 4] by neurologist
watching video as a measurement on the severity of each PD
symptom. In this work, we focus first on the two major hand
controlling tasks (Task 2 and Task 7). Task 2 is the Movement
task (a.k.a.,“Finger Taps”) that requires the patient to tap
thumb and index finger together in rapid succession. Task 7
is the Tremor task, where doctor checks the patient’s tremor
state when at relax. Video recording is done with Resolution:
1280x720, 30 FPS using a three camera setup placed in
three different positions: center (SONY HDR-PJ675), right
and left (SONY HDR-CX405) (sample collection is shown
in Figure 2). We further binarize the movement assessment
score for each hand into two classes (a score of 0 means
normal and scores between [1 - 4] as abnormal) and the
tremor assessment score is divided into two classes ( [0 -
1] means normal and [2 - 4] as abnormal) to conduct our
classification task.
B. Frame-Level Hand Feature Extraction

We utilize the OpenPose toolkit, i.e., a real-time multi-
person key points (including face, hands and body postures)
detection library [12], to track the key points of the hand
at 30 frames per second. An illustration on the key points
tracked is shown in Figure 3. To further construct our frame-
level hand features from the recordings, we first take the X-
coordinates, its difference in time (∆x) and the Y-coordinates
with its difference in time (∆y) as the moving distance of
the nine points (point 0 to 8). Then, we group eight points
into pairs (point 1 with point 5, point 2 with point 6, point
3 with point 7, and point 4 with point 8) and calculate
the distance, the velocity, and the acceleration between the
points within each pair. We concatenate the 48 values as our
frame-level hand movement feature vector. Specifically, we
compute this frame-level feature vector on the center position
camera because it generally captures the patient’s hand much
clearer without occlusion. We extract 10 seconds of each
task separately resulting in a 300 frames of frame-level hand
features used in this work.

1Our study is approved by the Institution of Review Board of Medical
University, IRB#:CMUH105-REC2-055

Fig. 2. It shows our camera setup in three positions: center, right, and left.

C. Task-Level Hand Feature Encoding

Our aim is to automatically classify two classes (normal
vs. abnormal) for each hand at the individual task level
(Task 2 and 7). We additionally encode these 300 frames of
frame-level features to a single task-level feature vector using
two different encoding approaches: functional encoding, and
Fisher vector encoding.

1) Functional: In this work, we compute 15 statistical
functions, i.e., max, min, mean, median, standard deviation,
1st percentile, 99th percentile, 99th percentile−1st percentile,
skewness, kurtosis, minimum position, maximum position,
lower quartile, upper quartile,interquartile range, over the
300 frame-level features resulting in an encoded vector with
dimension 720.

2) Fisher vector (FV): We also perform Fisher-vector
encoding as another approach in deriving task-level feature.
FV has been used extensively in computer vision applications
[13]. FV encoding first assumes the data is generated from a
Gaussian Mixture Model (GMM), and in order to represent
a data sample X , we define a scoring function as below:

GX
λ
= Oλ loguλ (X)

where uλ (X) denotes the likelihood of X given the proba-
bility distribution function (PDF) of a GMM. λ represents
the parameters of GMM, λ = wk,uk,∑k,k = 1, ...,K. GX

λ
is

the direction where λ has to move to provide a better fit
between uλ and X . Fisher vector is derived by computing
the following first and second order statistics:
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TABLE I
SUMMARY OF CLASSIFICATION RESULTS FOR LEFT AND RIGHT HAND IN THE TREMOR AND THE MOVEMENT SEVERITY TASK

Results
Functi FV-4 FV-8 FV-16 FV-32 Functi FV-4 FV-8 FV-16 FV-32

Movement Right Hand Left Hand
Concat-DNN 66.41 76.80 78.01 72.40 69.70 73.50 80.60 80.28 78.34 79.40
Single-DNN 64.51 71.95 71.08 72.04 66.77 72.84 73.53 76.11 75.93 72.99
Concat-SVM 72.30 71.20 72.10 67.60 67.40 67.80 75.00 78.80 76.10 72.30
Single-SVM 69.70 69.50 65.90 66.00 66.00 75.20 71.00 76.40 70.30 73.10

Tremor Right Hand Left Hand
Concat-DNN 72.20 71.10 65.24 64.08 64.71 71.10 65.70 65.04 67.14 67.02
Single-DNN 62.83 64.08 56.70 54.62 53.07 60.04 50.28 50.00 54.60 52.30
Concat-SVM 69.30 66.90 63.30 67.10 59.40 57.80 62.10 55.70 57.90 62.20
Single-SVM 62.20 64.70 63.20 64.50 63.10 59.80 59.10 59.80 63.40 63.50

γt(k) is defined as

γt(k) =
wkuk(xt)

∑
K
j=1 w ju j(xt)

where wk,uk,∑k,k = 1, ...,K correspond to mixture weight,
mean, and covariance matrix for each mixture of Gaussian. In
specifics, we use GMMs with different number of mixture (4-
GMM, 8-GMM, 16-GMM, 32-GMM) and retrieve the mean
and variance as our final FV-encoded task-level features for
each data sample (dimension = 48×2×mixture number).

D. Deep Joint Training

Figure 1 shows the complete structure of our proposed
framework. The encoded features from the two hand-
controlling tasks (Task 2 and Task 7) are concatenated
to be fed into a single deep feedforward neural network
that classify individual label of movement (left and right)
and tremor (left and right). Let’s denote the two input
features: movement feature, Xm and tremor feature, Xt where
Xm =[x1

m,x
2
m, ...,x

N
m] and Xt =[x1

t ,x
2
t , ...,x

N
t ] and total sample

number N. We utilize the following joint loss function, L, to
optimize our network:

K = σW3(σW2(Wm1(Xm),Wt1(Xt)))

L =−Y logK +(1−Y ) log(1−K)

where Y indicates the label of interest (two hands) for the two
tasks, YmR, YmL, YtR, YtL, where they all contain [y1,y2, ...,yN ],
and Wm1,Wt1,W2,W3 represents the parameters of each layer.
σ is the activation function. The use of joint training aims
at leveraging the hand motor behaviors that each patient
exhibits during Task 2 and 7 together to improve each of
the two tasks classification rate.

Fig. 3. An illustration shows the key points of hand extracted from the
OpenPose. [12]

III. EXPERIMENTAL SETUP AND RESULT

We compare our methods with several baselines. The
first is the standard baselines, i.e., each extracted task-level
features are trained using Support-Vector Machine (SVM) or
DNN separately without joint training (Single-SVM, Single-
DNN). Second, we use SVM for each label by feeding with
concatenated (Task 2 and Task 7) features together (Concat-
SVM). Finally our method is based on joint training on
concatenated task-level features (Concat-SVM). We perform
leave-one-patient out cross validation with the performance
metric of unweighted average recall (UAR).
A. Result and Discussion

Table I summarizes our results. For Single-SVM, the best
recognition rates obtained are 69.7% and 76.4% respectively
for right and left hand in the Movement task, and the best
recognition rates are 64.7% and 63.50% for right and left
hand classification in the Tremor task. Simply concatenating
features of both tasks (Concat-SVM), which introduces be-
havior information from the other task to the current task,
the best classification accuracy are 72.30% (increases about
2.6%) and 78.80% (increases about 2.6%) for right and left
hand classification in the Movement task. For the Tremor
task, the recognition rate for the right hand also improves to
69.30%, i.e., an increase of 4.6%.

We observe that through the use of deep joint training
(Concat-DNN) that we propose, the classification result of
each task reaches 78.01%, 80.60%, 72.20% and 71.10%,
which improves over the baseline Single-DNN about 6%,
4%, 8% and 11% respectively on right and left hand
recognition in the Movement task. The right and left hand
recognition in the Tremor task improves over the Single-
SVM method at around 9%, 4%, 8% and 7% respectively.
The proposed Concat-DNN is the best performing model,
which achieves accuracy of 78.01% and 80.60% in right and
left hand classification accuracy in the Movement task; in
terms of tremor severity classification, our approach obtains
recognition rates of 72.20% and 71.10% for right and left
hand respectively.
B. Movement and Tremor Analysis

We carry out a further analysis to understand which
particular cross-task behaviors may be contributing in the im-
provement of classification rates for our proposed deep joint
training framework. We first compute cross-task behavior-to-
label Spearman correlations, i.e., a patient’s Tremor’s task-
level hand features to his/her Movement assessment score,
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Fig. 4. Histograms on distribution of Tremor behaviors to Movement label or vice versa for normal (blue colored) vs. abnormal (orange colored).

and vice versa. We observe that moving distance of thumb
during the Tremor task is correlated highly to the Movement
score of a patient. On the other hand, the distance between
thumb and index finger (and their associated velocity and
acceleration) during the Movement task is correlated to the
Tremor score of a patient.

We further present a histogram demonstrating the dis-
criminability of the cross-task behaviors (Task 2 behaviors
for Task 7 label and vice versa) between the normal vs.
abnormal PD patients. Orange color indicates the patients
with disorder of tremor or movement (abnormal). Blue is
the patients without such disorder (normal). The plot of 4(a)
shows distribution of the moving distance of thumb between
the two groups; the plot of 4(b) shows the distribution of
the distance of [the head of thumb, the head of index finger]
between the two groups; the plots of 4(c) and 4(d) show the
distribution of distance of [the root of thumb, the root of
index finger] between the two groups.

In these four plots, we observe a distinct distributions
between abnormal (Orange) vs. normal (Blue). Generally,
we see that moving distance of thumb from in the Movement
task are related to the Tremor score, and the distance between
thumb and index finger during the Tremor task is related to
the Movement score. The complementary information may
have resulted from the fact that PD patient has a central
motor system disorder that affects his/her hand muscle move-
ments jointly even when being assessed to perform different
targeted actions. This phenomenon, as captured by our deep
joint training framework, are being leveraged in advancing
the automatic assessment accuracy.

IV. CONCLUSIONS

In this work, we propose a deep jointly training network to
perform vision-based automatic classification between nor-
mal vs. abnormal hand-related Tremor and Movement states
for PD patients during UPDRS assessment. Specifically, the
joint training framework leverages the cross-tasks behaviors
exhibited by the patient to improve the classification rate of
the target task. An immediate future work is to integrate all
13 tasks in the UPDRS to move toward a fully clinically-
relevant automatic severity assessment for PD patients. At
the same time, we would like to investigate how does
a PD patient’s core motor system affects each type of
targeted muscle-controlling actions (e.g. rapid movement,
stable controlling, precise touching, etc) in a large scale
manner by continuously developing advanced vision-based
deep learning algorithms to be used and validated clinically.
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